Изобретение относится к области технологии получения высокотемпературных сверхпроводников в системе металл - оксид металла и может использоваться для получения соединений, обладающих особыми физическими свойствами.
В практике физических исследований известны высокотемпературные сверхпроводники, полученные в различных системах металл - оксид металла. Хотя имеются физические предпосылки к обнаружению таких сверхпроводников и в системе натрий-теллурид натрия. В научной литературе сведений об исследованиях этой системы обнаружить не удалось.
Из уровня техники известен способ получения сверхпроводника теллурида железа нестехиометрического состава FeTe1+x(x=0; 0,2; 0,4). По этому способу на несверхпроводящие подложки состава (LаАlO3)0,3(SrAl0,5Ta0,5O3)0,7, MgO, SrTiO3 и LаАlO3 лазерным напылением пленки теллурида железа толщиной 100-500 нм состава Fe8,9Te в вакууме 4×10-5 Па при температуре 540°С. Далее пленки отжигают в вакууме при 600°С в течение 24 ч. Температура перехода в сверхпроводящее состояние полученных образцов составляла 13 К [Y.Ban et al. Superconductivity in iron telluride thin films under tensile strength, PRL (2010) v.104, 017003]. К недостаткам этого способа следует отнести технологическую сложность и большую продолжительность процесса. Кроме того, температура перехода в сверхпроводящее состояние полученных пленок довольно низкая, всего 13К.
Задача изобретения - получение сверхпроводника в системе натрий - теллурид натрия с высокой температурой перехода в сверхпроводящее состояние, упрощение технологии получения при одновременном повышении воспроизводимости результатов синтеза.
Решение поставленной задачи достигается тем, что используется способ получения высокотемпературного сверхпроводника в системе натрий - теллурид натрия, включающий нагрев порошка теллура и образца металлического натрия в реакторе до температуры 200°С под вакуумом 5×10-4 Торр, выдержку в течение 1 ч и охлаждение до комнатной температуры. В предлагаемом способе реализуется идея, состоящая в покрытии поверхности образца металлического натрия пленкой теллурида натрия, образующегося при взаимодействии металлического натрия с парами теллура в вакууме при температуре выше температуры плавления натрия (98°С). Упругость паров твердого теллура при температуре 200°С достаточно высока (0,95 кПа), чтобы реализовать взаимодействие паров теллура с поверхностью расплавленного образца металлического натрия.
Результат такого взаимодействия поясняется чертежом, на котором показаны результаты измерения температуры сверхпроводящего перехода на материале, полученном с помощью именно этого способа.
Способ получения высокотемпературного сверхпроводника осуществляется следующим образом. Порошок теллура и кусочек металлического натрия помещают в кварцевый трубчатый реактор, который откачивают до остаточного давления 5×10-4 Торр. После этого ампулу отпаивают и помещают в печь, нагретую до температуры 200°С, т.е. до температуры, которая выше температуры плавления натрия (98°С). Образец отжигают в печи в течение 1 часа, извлекают из печи и проводят измерение магнитной восприимчивости в переменном магнитном поле с целью обнаружения сверхпроводящего перехода.
Пример реализации способа
В качестве исходных материалов использовали порошок теллура (100-500 мкм) чистотой 99,99% и металлический натрий чистотой 99,99%. Порошок теллура массой 1,27 г и кусочек натрия массой 0,23 г помещали в кварцевую ампулу, которую вакуумировали до остаточного давления 5×10-4 Торр. Ампулу отпаивали и помещали в печь сопротивления, нагретую до температуры 200°С, которая выше температуры плавления натрия (98°С). Образец металлического натрия с порошком теллура выдерживали при этой температуре в течение 1 часа, после чего ампулу охлаждали до комнатной температуры и проводили измерение магнитной восприимчивости в переменном магнитном поле. Результаты измерения представлены на чертеже: переход полученного образца в сверхпроводящее состояние составляет 35 К.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ПОЛУЧЕНИЯ ВЫСОКОТЕМПЕРАТУРНОГО СВЕРХПРОВОДНИКА В СИСТЕМЕ ЛИТИЙ-ТЕЛЛУРИД СУРЬМЫ | 2010 |
|
RU2442837C1 |
СПОСОБ ПОЛУЧЕНИЯ ВЫСОКОТЕМПЕРАТУРНОГО СВЕРХПРОВОДНИКА В СИСТЕМЕ НАТРИЙ-ТЕЛЛУРИД СУРЬМЫ | 2010 |
|
RU2441935C1 |
СПОСОБ ПОЛУЧЕНИЯ ВЫСОКОТЕМПЕРАТУРНОГО СВЕРХПРОВОДНИКА В СИСТЕМЕ НАТРИЙ-ОКСИД НАТРИЯ | 2010 |
|
RU2441933C1 |
СПОСОБ ПОЛУЧЕНИЯ ВЫСОКОТЕМПЕРАТУРНОГО СВЕРХПРОВОДНИКА В СИСТЕМЕ МЕДЬ-ОКСИД МЕДИ | 2010 |
|
RU2441936C1 |
СПОСОБ ПОЛУЧЕНИЯ ВЫСОКОТЕМПЕРАТУРНОГО СВЕРХПРОВОДНИКА В СИСТЕМЕ АЛЮМИНИЙ - ОКСИД АЛЮМИНИЯ | 2011 |
|
RU2471269C1 |
СПОСОБ ПОЛУЧЕНИЯ СВЕРХПРОВОДЯЩЕГО ТРЕХКОМПОНЕНТНОГО БОРИДА | 2010 |
|
RU2443627C1 |
СПОСОБ ПОЛУЧЕНИЯ ВЫСОКОТЕМПЕРАТУРНОГО СВЕРХПРОВОДНИКА В СИСТЕМЕ МАГНИЙ-ОКСИД МАГНИЯ | 2011 |
|
RU2471268C1 |
СПОСОБ ПОЛУЧЕНИЯ ВЫСОКОТЕМПЕРАТУРНОГО СВЕРХПРОВОДНИКА В СИСТЕМЕ ЖЕЛЕЗО-ОКСИД ЖЕЛЕЗА | 2010 |
|
RU2441845C1 |
СПОСОБ СИНТЕЗА МОНОКРИСТАЛЛИЧЕСКИХ ТЕТРАГОНАЛЬНЫХ ТЕЛЛУРИДОВ ЖЕЛЕЗА И ТЕЛЛУРИДОВ ЖЕЛЕЗА, ЛЕГИРОВАННЫХ СЕРОЙ И/ИЛИ СЕЛЕНОМ | 2013 |
|
RU2538740C2 |
СПОСОБ ПОЛУЧЕНИЯ ПЛЕНКИ ОКСИДНОГО СВЕРХПРОВОДНИКА И ОКСИДНОЕ СВЕРХПРОВОДНИКОВОЕ ИЗДЕЛИЕ | 1998 |
|
RU2232448C2 |
Изобретение относится к технологии получения высокотемпературных проводников в системе металл - оксид металла и может использоваться для получения соединений, обладающих особыми физическими свойствами. Порошок теллура с металлическим натрием нагревают до температуры 200°С в реакторе под вакуумом 5×10-4 Торр, выдерживают в течение 1 ч и охлаждают до комнатной температуры. Обеспечивается получение сверхпроводника с температурой перехода в сверхпроводящее состояние 35К при одновременном повышении воспроизводимости результатов синтеза. 1 ил.
Способ получения высокотемпературного сверхпроводника в системе натрий-теллурид натрия, включающий нагрев порошка теллура с металлическим натрием до температуры 200°С в реакторе под вакуумом 5·10-4 Торр, выдержку в течение 1 ч и охлаждение до комнатной температуры.
US 5508256 А, 16.04.1996 | |||
СПОСОБ ПОЛУЧЕНИЯ ВЫСОКОТЕМПЕРАТУРНЫХ СВЕРХПРОВОДНИКОВ НА ОСНОВЕ ДИБОРИДА МАГНИЯ | 2004 |
|
RU2290708C2 |
DE 19808762 A1, 03.09.1998 | |||
JP 4104939 A, 07.04.1992. |
Авторы
Даты
2012-02-10—Публикация
2010-07-06—Подача