Изобретение относится к области химической технологии, а именно к получению новых сверхпроводящих борсодержащих соединений.
Из уровня техники известно несколько десятков сверхпроводящих борсодержащих соединений [C.Buzea et al. Review of the superconducting properties of MgB2. Superconductor Science & Technology, 2001, v.14, No.11, pp.R115-R146]. Известно также соединение состава LuRh4B4, переходящее в сверхпроводящее состояние при температуре Тс=11,76 К [J М.Vandenberg et al., Proc. Natl. Ac. Sci. USA, 1977, v.74, p.1336]. Указанное соединение получали методом прямого синтеза из элементов при повышенной температуре (~1000°С).
Существенный недостаток известных способов состоит в отсутствии возможности получения трехкомпонентных соединений со сверхпроводящим переходом при температуре выше ~12 К. Сведений о сверхпроводящих трехкомпонентных соединениях, в состав которых входили бы ванадий, бор и литий, вообще обнаружить не удалось.
Техническая задача - получение сверхпроводящих соединений, содержащих литий, ванадий и бор, с переходом в сверхпроводящее состояние при существенно более высоких температурах.
Это достигается тем, что сверхпроводящий трехкомпонентный борид, содержащий литий, ванадий и бор, с переходом в сверхпроводящее состояние при температуре 27 К получают твердофазным высокотемпературным синтезом исходных компонентов порошка ванадия, порошка бора и металлического лития. В смесь порошков ванадия и бора в мольном отношении 1:2 добавляют от 0,3 до 0,5 моля металлического лития. Синтез сверхпроводящего борида проводят в вакууме 10-4 Па при температуре 1000°С в течение 5 минут.
Способ иллюстрируется рис.1, на котором представлены температурные зависимости нормированного на внешнее магнитное поле Н магнитного момента т/Н образцов LiVB. Зависимости (1), (2) и (3) соответствуют образцам, находящимся во внешних магнитных полях Н=100, 300 и 500 Э в процессе измерений, соответственно. Вертикальной стрелкой указана температура перехода образцов в сверхпроводящее состояние Тс=27 К.
Способ осуществляют следующим образом. В смесь порошков ванадия и бора в мольном отношении 1:2 добавляют от 0,3 до 0,5 молей металлического лития. Смесь засыпают в контейнер из нержавеющей стали, который затем помещают в кварцевую ампулу. Для проведения твердофазного высокотемпературного синтеза ампулу подвергают вакуумированию, герметичному отпаиванию и выдержке в печи при температуре 1000°С в течение нескольких минут. После завершения процесса ампулу извлекают из печи, охлаждают до комнатной температуры и, не вскрывая, подвергают контролю сверхпроводящих свойств спеченного образца (продуктов реакции) с помощью измерения температурных зависимостей магнитного момента образца на СКВИД-магнетометре.
На рис.1 представлены температурные зависимости нормированного на внешнее магнитное поле Н магнитного момента m/Н образцов LiVB. Зависимости (1), (2) и (3) соответствуют образцам, находящимся в процессе измерений во внешних магнитных полях Н=100, 300 и 500 Э соответственно. Отклонение магнитного момента m/Н в область отрицательных значений (диамагнитное состояние) наблюдается при температуре Тc<27 К, что свидетельствует о возникновении сверхпроводимости в образцах при температуре Тс=27 К. Увеличение внешнего магнитного поля Н приводит к подавлению сверхпроводимости в образцах (уменьшению диамагнитного сигнала от образцов), что демонстрируется зависимостями (1), (2) и (3).
Пример 1
В контейнер из нержавеющей стали диаметром 4 мм, толщиной стенки 0,3 мм и высотой 25 мм помещали порошки ванадия и бора с размером зерен 100-200 мкм в мольном отношении 1:2 (масса ванадия - 51 мг или 1 ммоль, масса бора - 21,6 мг или 2 ммоль), туда же добавляли кусочек лития массой 2,1 мг или 0,3 ммоль. Контейнер помещали в кварцевую ампулу с внутренним диаметром 5 мм, которую вакуумировали до остаточного давления 10-4 Па и герметично отпаивали. Ампулу устанавливали вертикально в печи сопротивления, нагретой до 1000°С, и выдерживали в течение 5 минут. Затем ампулу извлекали из печи, охлаждали до комнатной температуры и, не вскрывая, исследовали сверхпроводящие свойства полученного образца состава LiVB (рис.1).
Пример 2
В контейнер из нержавеющей стали диаметром 4 мм, толщиной стенки 0,3 мм и высотой 25 мм помещали порошки ванадия и бора с размером зерен 100-200 мкм в мольном отношении 1:2 (масса ванадия - 51 мг или 1 ммоль, масса бора - 21,6 мг или 2 ммоль), туда же помещали кусок лития массой 3,5 мг или 0,5 ммоль. Контейнер помещали в кварцевую ампулу с внутренним диаметром 5 мм, которую вакуумировали до остаточного давления 10-4 Па и герметично отпаивали. Ампулу помещали вертикально в печь сопротивления, нагретую до 1000°С, и выдерживали в течение 5 минут. Затем ампулу извлекали из печи, охлаждали до комнатной температуры и, не вскрывая, исследовали сверхпроводящие свойства полученного образца состава LiVB. Установлено, что образец, полученный по описанной процедуре, имеет сверхпроводящие свойства, идентичные кривым, представленным на рис.1 (поэтому рисунок с этими кривыми авторы решили не дублировать).
Таким образом, предлагаемые компоненты, их количественный состав и условия термообработки позволяют получить новое соединение, переходящее в сверхпроводящее состояние при температуре ~27 К.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ПОЛУЧЕНИЯ ДИБОРИДА МАГНИЯ | 2001 |
|
RU2202515C2 |
СПОСОБ ПОЛУЧЕНИЯ ВЫСОКОТЕМПЕРАТУРНОГО СВЕРХПРОВОДНИКА В СИСТЕМЕ ЛИТИЙ-ТЕЛЛУРИД СУРЬМЫ | 2010 |
|
RU2442837C1 |
СПОСОБ ПОЛУЧЕНИЯ ВЫСОКОТЕМПЕРАТУРНОГО СВЕРХПРОВОДНИКА В СИСТЕМЕ МЕДЬ-ОКСИД МЕДИ | 2010 |
|
RU2441936C1 |
Способ борирования поверхностных слоев углеродистой стали при помощи индукционного воздействия | 2018 |
|
RU2693416C1 |
СПОСОБ ПОЛУЧЕНИЯ ВЫСОКОТЕМПЕРАТУРНОГО СВЕРХПРОВОДНИКА В СИСТЕМЕ НАТРИЙ - ТЕЛЛУРИД НАТРИЯ | 2010 |
|
RU2441934C1 |
Способ борирования поверхностных слоев углеродистой стали | 2022 |
|
RU2791477C1 |
СПОСОБ ПОЛУЧЕНИЯ ВЫСОКОТЕМПЕРАТУРНОГО СВЕРХПРОВОДНИКА В СИСТЕМЕ НАТРИЙ-ТЕЛЛУРИД СУРЬМЫ | 2010 |
|
RU2441935C1 |
Ферромагнитный абразивный материал и способ его получения | 1987 |
|
SU1502284A1 |
СПОСОБ ПОЛУЧЕНИЯ СВЕРХПРОВОДЯЩЕГО СОЕДИНЕНИЯ КАЛЬЦИЙ-ФОСФОР-КИСЛОРОД | 2010 |
|
RU2442749C1 |
СПОСОБ ПОЛУЧЕНИЯ КОМПОЗИТНЫХ МАТЕРИАЛОВ НА ОСНОВЕ ВЫСОКОТЕМПЕРАТУРНЫХ СВЕРХПРОВОДНИКОВ | 2002 |
|
RU2228311C2 |
Изобретение относится к области химической технологии, а именно к получению новых сверхпроводящих борсодержащих соединений. Сверхпроводящий трехкомпонентный борид, содержащий литий, ванадий и бор, с переходом в сверхпроводящее состояние при температуре 27 К получают твердофазным высокотемпературным синтезом исходных компонентов в виде смеси порошков ванадия и порошка бора, имеющих мольное отношение 1:2, и 0,3-0,5 моля металлического лития при температуре 1000°С в вакууме 10-4 Па в течение 5 минут. Технический результат изобретения - получение сверхпроводящих соединений, содержащих литий, ванадий и бор, с переходом в сверхпроводящее состояние при существенно более высоких температурах. 2 пр., 1 ил.
Способ получения сверхпроводящего трехкомпонентного борида, содержащего литий, ванадий и бор, с переходом в сверхпроводящее состояние при температуре 27 К, заключающийся в твердофазном высокотемпературном синтезе исходных компонентов в виде смеси порошков ванадия и порошка бора, имеющих мольное отношение 1:2, и 0,3-0,5 моля металлического лития при температуре 1000°С в вакууме 10-4 Па в течение 5 мин.
Lingwei Li et al | |||
Ni substitution effect on structure and superconductivity properties in Li(PdNi)B boride system, "Physica С: Superconductivity", 1 February 2008, v.468, Issue 3, p.244-248 | |||
Takeya Hiroyuki et al, Pressure effect and superconducting properties of lithium ternary borides, "Physica |
Авторы
Даты
2012-02-27—Публикация
2010-06-03—Подача