СПОСОБ ПРИГОТОВЛЕНИЯ БЛОЧНЫХ СОТОВЫХ КОРДИЕРИТОВЫХ КАТАЛИЗАТОРОВ ОЧИСТКИ ОТРАБОТАВШИХ ГАЗОВ ДВИГАТЕЛЕЙ ВНУТРЕННЕГО СГОРАНИЯ Российский патент 2012 года по МПК B01J31/02 B01J37/25 B01J23/44 B01J21/16 B01D53/94 

Описание патента на изобретение RU2442651C1

Изобретение относится к способам получения катализатора очистки отработавших газов ДВС.

Известны способы приготовления катализаторов на носителях сотовой структуры, изготовленных как из металлических сплавов, так и керамических материалов, содержащие множество отверстий в направлении течения газового потока. Исходная удельная поверхность таких блочных носителей мала (0,01-0,65 м2/г) и катализаторы на их основе обладают низкой каталитической активностью.

Для увеличения исходной удельной поверхности металлических и керамических блочных носителей широко практикуется нанесение промежуточной подложки.

Для увеличения исходной удельной поверхности керамических блочных носителей широко используется способ "washcoat". Суть этого способа состоит в нанесении промежуточной подложки на основе оксида алюминия с высокой удельной поверхностью (100-200 м2/г), на которую затем осаждают один или несколько металлов платиновой группы (платина, палладий, родий) в качестве активного компонента, а в качестве промотирующих добавок в состав катализатора вводят оксиды редкоземельных металлов (церия, лантана и др.). Осаждение редкоземельных и благородных металлов происходит преимущественно из водных растворов их неорганических солей с последующей сушкой и восстановлением катализатора.

По известному способу (US 4587231) с целью получения блочного катализатора очистки выхлопных газов ДВС исходный монолитный носитель многократно обрабатывают глиноземной суспензией, в которой диспергирован порошок оксида алюминия, содержащий оксид церия, причем оксид церия образуется путем предварительной пропитки порошка оксида алюминия раствором соли церия и последующим прокаливанием. Обработанный суспензией носитель прокаливают и на оксидно-алюминиевое покрытие наносят активные вещества - металлы платиновой группы. Для этого на промежуточное покрытие наносят водный раствор каждого осаждаемого соединения благородного металла (платина, родий) отдельно и подвергают его термическому разложению. К недостаткам описанного выше суспензионного способа следует отнести низкую прочность сцепления покрытия из оксида алюминия с исходной металлической поверхностью, в результате чего снижается ресурс работы катализатора за счет отслоения промежуточного покрытия с активными веществами. Кроме того, раздельное нанесение благородных металлов на носитель с промежуточным покрытием значительно усложняет технологию и увеличивает время приготовления катализатора и не приводит к увеличению каталитической активности.

В европейском патенте (ЕР 1438135 A3) описан способ приготовления катализатора на носителе сотовой структуры, на поверхности которого формируют слой оксида алюминия с последующим введением известными способами стабилизирующих и модифицирующих оксид алюминия добавок и каталитических компонентов. Для получения высокой удельной поверхности промежуточного покрытия процедуру нанесения оксида алюминия из суспензии повторяют несколько раз и после каждой операции проводят сушку носителя, что приводит к дополнительным энергозатратам. Недостатком способа является его многостадийность и значительная энергоемкость без увеличения активности катализатора.

Известен патент РФ №2275962, в котором для приготовления катализатора используют в качестве носителя цилиндрический блок из кордиерита со сквозными продольными каналами. В печи блочный носитель прокаливают на воздухе при температуре 500-550°C в течение 5-8 часов. Далее блок после охлаждения погружают в суспензию следующего состава, мас.%: бемит (удельная поверхность 350 м2/г) - 15, азотнокислый алюминий - 1, азотнокислый церий - 4, раствор гидроксида аммония (25%-ный) - 10, соли H2PtCI6·6H2O и RhCI3·3H2O, в пересчете на металлы - 0,02 (из них Pt - 0,016, Rh - 0,004), вода:этиловый спирт в массовом соотношении 1:10 - остальное. Затем блок вынимают, центрифугируют в течение 1-2 мин со скоростью вращения 1500 об/мин. Далее блок сушат при ступенчатом подъеме температуры от 50 до 120°C и термообрабатывают при температуре 500-550°C с последующим восстановлением платиновых металлов в водороде при 350°C. Затем блок выгружают и весовым методом определяют массу нанесенного каталитического покрытия. Полученный катализатор имеет следующий состав, в мас.%: Al2O3 - 5,6, CeO2 - 0,5, Pt - 0,1, Rh - 0,02, носитель - остальное. Удельная поверхность покрытия, определенная методом БЭТ по низкотемпературной сорбции азота, составила 100 м2/г Al2O3.

Существо предлагаемых способов получения катализатора на металлических носителях блочной структуры заключается в следующем.

В качестве инертного носителя берут разнообразные по составу стальные фольги, гофрируют, сворачивают в блоки и подвергают окислению на воздухе при 900-1050°C. Затем на блок наносят покрытие из оксида алюминия в водном растворе едкого натра при непосредственном растворении в нем алюминиевой стружки при 60-80°C с последующей промывкой, сушкой и термообработкой при 500°C (патент РФ 2005538). Покрытие из оксида алюминия пропитывают водными растворами солей Ce(NO3)2, H2PtCl6 и RhCl3 с последующей сушкой и восстановлением активных веществ (Pt и Rh) водородом. Недостатком способа является продолжительность нанесения покрытия - от 24 до 70 часов и многостадийность процесса, а также непригодность для приготовления катализатора на керамическом блочном носителе. Длительное пребывание носителя, например, из кордиерита в растворе гидроксида калия для получения необходимой толщины покрытия и повышение температуры раствора в процессе нанесения (до 40-50°C) ведет к разбуханию керамического материала и его растрескиванию в ходе термической обработки.

За прототип принят патент РФ №2190470 от 10.10.2002 «Способ приготовления катализатора очистки отработавших газов двигателей внутреннего сгорания», в котором нанесение на носитель БСК слоя гидроксида алюминия осуществляют из водного раствора гидроксида калия в присутствии в растворе металлического алюминия при температуре 20-25°C, отделение носителя со слоем гидроксида алюминия от указанного раствора, формирование слоя оксида алюминия путем термической дегидратации гидроксида алюминия, введение одного или нескольких веществ, термостабилизирующих оксид алюминия, одного или нескольких каталитических веществ (Pt, Rh). Недостатком способа является многостадийность процесса, проведение восстановления водородом при 400°C в течение 5 ч, что требует повышенных мер безопасности, нетехнологичность процесса нанесения гидроксида алюминия при масштабировании процесса.

Задачей настоящего изобретения является получение активного катализатора с качественным покрытием на носителе БСК.

Техническим результатом является ускорение и упрощение технологии нанесения на носитель БСК промежуточного покрытия.

Способ приготовления катализаторов очистки отработавших газов двигателей внутреннего сгорания включает использование кордиеритовых носителей сотовой структуры, формирование промежуточного инертного слоя гидроксидов алюминия и кремния, пропиткой водными растворами солей церия и палладия, и восстановлением палладия водородом.

Формирование инертного слоя гидроксида алюминия и кремния проводят в водном растворе гидроксида натрия при комнатной температуре. Далее осуществляют пропитку в реакторе носителя с инертным слоем водным раствором солей церия и прекурсора, в качестве которого используют перхлорат палладия (II), получающийся непосредственно при растворении в воде хлорида палладия (II) в присутствии хлорной кислоты. Восстановление палладия водородом на поверхности катализатора ведут в реакторе при атмосферном давлении и комнатной температуре.

Способ приготовления катализатора для очистки отработавших газов ДВС включает предварительную обработку носителя сотовой структуры сильным основанием.

В качестве носителя сотовой структуры для активного компонента в настоящем изобретении были использованы БСК, производимые фирмой Раушерт (ФРГ), содержащие 400 продольных каналов на 1 дюйм2, имеющие следующий химический состав, в процентах весовых: основные оксиды, MgO 14±1,0%, Al2O3 34±1,5%, SiO2 49±1,5%; остальные K2O 0,40%, Na2O 0,20%, CaO 0,50%, TiO2 0,15%, Fe2O3 0,25%.

Кристаллический фазовый состав: основная фаза кордиерит 2MgO-2Al2O3-5SiO2, не менее 90%.

В основе данного патента лежит предположение о возможности образования промежуточной подложки на основе оксидов алюминия и кремния с высокой удельной поверхностью в результате непосредственного взаимодействия с сильным основанием в отсутствии алюминия в виде металлической стружки.

Для этого указанные блоки были обработаны 2 М водным раствором NaOH при комнатной (18-25°C) температуре. Вследствие химического взаимодействия с едким натром поверхностные оксиды Al2O3 (амфотерный) и SiO2 (кислотный) частично переходят в различные гидроксо- формы бемитного типа. Это сопровождается увеличением удельной поверхности блока (удельная поверхность покрытия, определенная методом БЭТ составила 95-100 м2/г) и повышением его каталитической активности.

Формирование по прототипу слоя оксидов алюминия и кремния происходит в результате термической дегидратации гидроксидов алюминия и кремния, происходящей при температуре 500°C, что значительно усложняет процесс приготовления катализатора

Пример, иллюстрирующий осуществление процесса по предлагаемому способу.

Носитель, а именно блок сотовый керамический БСК (диаметр - 100 мм, высота - 100 мм, масса 400±10 г) помещали в 2 М водный раствор едкого натра и выдерживали в течение 48 часов, после чего извлекали, промывали 2-мя литрами дистиллированной воды, высушивали при 150°C в течение 4 ч.

Палладиевый прекурсор приготавливали растворением 0,4-0,8 г хлорида палладия (II) в 800 мл воды, содержащей 1 мл концентрированной хлорной кислоты. К приготовленному раствору палладиевого прекурсора добавляли 12,5 г гексагидрата нитрата церия. Полученный раствор нейтрализовали водным раствором NaOH до рН=7 и переносили в цилиндрический, герметичный тефлоновый реактор, в который также помещали БСК. Реактор закрепляли на платформе шейкера в горизонтальном положении так, чтобы продольная ось цилиндра совпадала с направлением перемещения платформы. Перемешивание раствора осуществляли в течение 4-х часов при комнатной температуре.

Затем раствор сливали и реактор вакуумировали водоструйным насосом. Далее в этом же реакторе проводили восстановление палладия водородом при атмосферном давлении и комнатной температуре. Восстановление проводили в течение 40 мин. Затем блок извлекали из реактора, сушили при 150°C в течение 2 ч и прокаливали при 700°C в течение 2 ч. Содержание Pd в блоке - 0,5-1,0, CeO2 - 5-6 г/литр.

Полученный катализатор был использован при проведении стендовых моторных испытаний на показатели токсичности отработавших газов бензинового карбюраторного двигателя. Программа испытаний включала замеры показателей токсичности отработавших газов бензинового карбюраторного двигателя в стехиометрическом режиме. Замеры токсичности производились пятикомпонентным (CO, CO2, CH, NOx, O2) газоанализатором "ОПТОГА3-500.1М". Процедура проведения испытаний и обработка результатов измерений соответствует ГОСТ 14846-81 "Двигатели автомобильные. Методы стендовых испытаний". Результаты стендовых испытаний приведены в таблице.

Коэффициенты гашения токсических компонент, в %: Число оборотов в мин/крутящий момент, в нм CO2 CO CH NO O2 2000/20 -8 82 42 28 68 2000/50 -13 78 59 40 98 2000/80 -8 74 54 33 100 3000/20 -6 84 46 13 68 3000/50 -7 72 49 16 98 3000/80 -6 72 56 18 100 4000/50 -6 67 53 18 95 4000/80 -5 65 54 8 100

Таким образом, технический результат, заключающийся в упрощении технологии приготовления катализатора, выражается в том, что вследствие уменьшения числа стадий:

происходит ускорение приготовления катализатора;

восстановление водородом производится при комнатной температуре в течение 40 минут, а не при 400°C в течение 5 ч;

применяемая процедура не требует соблюдения специальных условий восстановления палладия и, т.о. - повышенных мер безопасности;

формирование слоя гидроксидов алюминия и кремния прямо на поверхности БСК более технологично и существенно упрощает процедуру.

Похожие патенты RU2442651C1

название год авторы номер документа
СПОСОБ ПРИГОТОВЛЕНИЯ КАТАЛИЗАТОРА ОЧИСТКИ ОТРАБОТАВШИХ ГАЗОВ ДВИГАТЕЛЕЙ ВНУТРЕННЕГО СГОРАНИЯ И КАТАЛИЗАТОР, ПОЛУЧЕННЫЙ ЭТИМ СПОСОБОМ 2006
  • Дробаха Григорий Сергеевич
  • Дробаха Елена Алексеевна
  • Солнцев Константин Александрович
RU2322296C1
СПОСОБ ПРИГОТОВЛЕНИЯ КАТАЛИЗАТОРА ОЧИСТКИ ОТРАБОТАВШИХ ГАЗОВ ДВИГАТЕЛЕЙ ВНУТРЕННЕГО СГОРАНИЯ 2000
  • Дробаха Е.А.
  • Солнцев К.А.
RU2190470C2
СПОСОБ ПРИГОТОВЛЕНИЯ КАТАЛИЗАТОРА ДЛЯ ОЧИСТКИ ОТРАБОТАВШИХ ГАЗОВ ДВИГАТЕЛЕЙ ВНУТРЕННЕГО СГОРАНИЯ И КАТАЛИЗАТОР, ПОЛУЧЕННЫЙ ЭТИМ СПОСОБОМ 2004
  • Дробаха Елена Алексеевна
  • Дробаха Григорий Сергеевич
  • Солнцев Константин Александрович
RU2275962C1
СПОСОБ ПРИГОТОВЛЕНИЯ КАТАЛИЗАТОРА И КАТАЛИЗАТОР ОКИСЛЕНИЯ СО 2015
  • Власов Евгений Александрович
  • Постнов Аркадий Юрьевич
  • Мальцева Наталья Васильевна
  • Вишневская Татьяна Алексеевна
  • Киршин Алексей Иванович
  • Петров Василий Александрович
  • Михайленко Вадим Сергеевич
  • Кича Максим Александрович
RU2614147C1
СПОСОБ ПРИГОТОВЛЕНИЯ КАТАЛИЗАТОРА И КАТАЛИЗАТОР ДЛЯ ОЧИСТКИ ВЫХЛОПНЫХ ГАЗОВ ДВИГАТЕЛЕЙ ВНУТРЕННЕГО СГОРАНИЯ 2000
  • Глазунова Л.Д.
  • Дзисяк А.П.
  • Сапрыкина О.Ф.
RU2169614C1
СПОСОБ ПРИГОТОВЛЕНИЯ КАТАЛИЗАТОРА ДЛЯ ОЧИСТКИ ОТРАБОТАВШИХ ГАЗОВ ДВИГАТЕЛЕЙ ВНУТРЕННЕГО СГОРАНИЯ И КАТАЛИЗАТОР, ПОЛУЧЕННЫЙ ЭТИМ СПОСОБОМ 2012
  • Солнцев Константин Александрович
  • Дробаха Елена Алексеевна
  • Дробаха Григорий Сергеевич
  • Дробаха Сергей Александрович
RU2502561C1
СПОСОБ ПРИГОТОВЛЕНИЯ КАТАЛИЗАТОРА И КАТАЛИЗАТОР ОКИСЛЕНИЯ ВОДОРОДА ДЛЯ УСТРОЙСТВ ЕГО ПАССИВНОЙ РЕКОМБИНАЦИИ 2011
  • Мальцева Наталья Васильевна
  • Власов Евгений Александрович
  • Постнов Аркадий Юрьевич
  • Вишневская Татьяна Алексеевна
  • Шигорин Дмитрий Михайлович
  • Ислентьев Дмитрий Валерьевич
RU2486957C1
СПОСОБ ПРИГОТОВЛЕНИЯ КАТАЛИЗАТОРА 2017
  • Симонов Павел Анатольевич
  • Шойнхорова Туяна Баировна
  • Снытников Павел Валерьевич
  • Потемкин Дмитрий Игоревич
  • Беляев Владимир Дмитриевич
  • Собянин Владимир Александрович
RU2653360C1
Катализатор и способ получения синтез-газа из метана с его использованием 2015
  • Тарасов Андрей Леонидович
  • Кустов Леонид Модестович
  • Лищинер Иосиф Израилевич
  • Малова Ольга Васильевна
  • Еремеева Ольга Сергеевна
RU2621689C1
Способ приготовления блочного катализатора 2023
  • Водянкина Ольга Владимировна
  • Харламова Тамара Сергеевна
  • Грабченко Мария Владимировна
  • Львова Екатерина Сергеевна
RU2825302C1

Реферат патента 2012 года СПОСОБ ПРИГОТОВЛЕНИЯ БЛОЧНЫХ СОТОВЫХ КОРДИЕРИТОВЫХ КАТАЛИЗАТОРОВ ОЧИСТКИ ОТРАБОТАВШИХ ГАЗОВ ДВИГАТЕЛЕЙ ВНУТРЕННЕГО СГОРАНИЯ

Изобретение относится к способам получения катализатора очистки отработавших газов двигателей внутреннего сгорания. Описан способ приготовления катализаторов очистки отработавших газов двигателей внутреннего сгорания, характеризующийся использованием кордиеритовых носителей сотовой структуры, формированием на носителе инертного слоя гидроксидов алюминия и кремния путем обработки водным раствором гидроксида натрия при комнатной температуре, последующей пропиткой в реакторе носителя с инертным слоем водным раствором солей церия и прекурсора, в качестве которого используют перхлорат палладия (II), получающийся непосредственно при растворении в воде хлорида палладия (II) в присутствии хлорной кислоты, далее восстановление палладия водородом на поверхности катализатора ведут в упомянутом реакторе при атмосферном давлении и комнатной температуре. Технический результат - ускорение и упрощение технологии приготовления катализатора. 1 табл.

Формула изобретения RU 2 442 651 C1

Способ приготовления катализаторов очистки отработавших газов двигателей внутреннего сгорания, характеризующийся использованием кордиеритовых носителей сотовой структуры, формированием на носителе инертного слоя гидроксидов алюминия и кремния путем обработки водным раствором гидроксида натрия при комнатной температуре, последующей пропиткой в реакторе носителя с инертным слоем водным раствором солей церия и прекурсора, в качестве которого используют перхлорат палладия (II), получающийся непосредственно при растворении в воде хлорида палладия (II) в присутствии хлорной кислоты, далее восстановление палладия водородом на поверхности катализатора ведут в упомянутом реакторе при атмосферном давлении и комнатной температуре.

Документы, цитированные в отчете о поиске Патент 2012 года RU2442651C1

СПОСОБ ПРИГОТОВЛЕНИЯ КАТАЛИЗАТОРА ОЧИСТКИ ОТРАБОТАВШИХ ГАЗОВ ДВИГАТЕЛЕЙ ВНУТРЕННЕГО СГОРАНИЯ 2000
  • Дробаха Е.А.
  • Солнцев К.А.
RU2190470C2
КАТАЛИЗАТОР ДЛЯ ОКИСЛИТЕЛЬНОЙ ОЧИСТКИ ВЫХЛОПНЫХ ГАЗОВ ДИЗЕЛЬНЫХ МОТОРОВ 1990
  • Домесле Раинер[De]
  • Энглер Бернд[De]
  • Коберштайн Эдгар[At]
  • Фелькер Херберт[De]
RU2022643C1
ВЫЕЗДНАЯ ПЛОЩАДКА ТЕАТРАЛЬНЫХ СЦЕН 0
SU329302A1
JP 63080850 А, 11.04.1988
CN 1935370 А, 28.03.2007
US 7043902 В2, 16.05.2006.

RU 2 442 651 C1

Авторы

Украинцев Валерий Борисович

Хохряков Константин Анатольевич

Даты

2012-02-20Публикация

2010-12-21Подача