КОМПОЗИЦИЯ ДЛЯ ПОЛУЧЕНИЯ КАТИОНООБМЕННОГО ВОЛОКНИСТОГО МАТЕРИАЛА Российский патент 2012 года по МПК C08L61/10 C02F1/42 C08J5/20 

Описание патента на изобретение RU2447103C2

Разработанная композиция предназначена для получения катионообменного волокнистого материала, используемого для очистки промышленных сточных вод от мономеров - в производстве химических волокон; от красителей и их компонентов - в лакокрасочном производстве; от синтетических поверхностно-активных веществ - в производстве синтетических моющих средств; от нефтепродуктов - на автозаправочных станциях; для умягчения и деминерализации воды - в системах технического водообеспечения; от взвешенных частиц и механических примесей, дисперсных железноокисных соединений.

Известна композиция для получения катионообменной смолы Katex FN, имеющая в своем составе фенолсульфокислоту, нафталинсульфокислоту, формальдегид.

Недостатком катионита Katex FN является низкое значение статической обменной емкости (СОЕ=0,54 мг-экв/г) [1].

Известна композиция, предназначенная для получения полимерной пресс-композиции с катионообменными свойствами. Катионообменную матрицу синтезируют на поверхности и в структуре волокнистого наполнителя после пропитки его пропиточным раствором. Композиция содержит в своем составе формалин, парафенолсульфокислоту и волокнистый наполнитель при следующем соотношении исходных компонентов, мас.%:

- парафенолсульфокислота - 30,12;

- формальдегид - 63,63;

- волокно - 6,25.

Материал характеризуется статической обменной емкостью 2,1-2,3 мг-экв/г.

Недостатком является низкое значение статической обменной емкости [2].

Наиболее близкой по составу и выполняемым функциям к изобретению является композиция для получения катионообменной смолы - КУ-1 [2]. Исходная композиция содержит в своем составе формалин, парафенолсульфокислоту, при следующем соотношении компонентов ионообменной матрицы, мас.%:

- парафенолсульфокислота - 61,4;

- формалин - 38,6.

Катионообменная смола, полученная из данной композиции, относится к типу бифункциональных сильнокислотных сульфокатионитов поликонденсационного типа с фенолоформальдегидной катионообменной матрицей. Имеет два вида ионогенных групп: сульфогруппу SO3Н и гидроксильную группу ОН.

Основным недостатком композиции для получения прототипа является низкое значение таких параметров, как удельный объем ионита, динамическая обменная емкость, осмотическая стабильность и высокое значение показателя окисляемости фильтрата

Технической задачей предлагаемого изобретения является снижение показателя окисляемости фильтрата, увеличение удельного объема катионита, повышение его динамической обменной емкости и повышение осмотической стабильности катионообменного волокнистого материала.

Поставленная задача решается за счет того, что композиция для получения катионообменного волокнистого материала, содержащая парафенолсульфокислоту и формалин, дополнительно содержит наполнитель - базальтовую вату, предварительно подвергнутую термообработке в течение 1 часа при температуре 350-450°С и последующей СВЧ-обработке при мощности излучения 180 Вт или 750 Вт в течение 30 секунд, при следующем соотношении компонентов, мас.%:

парафенолсульфокислота - 50÷55,8;

формалин - 40,9÷35,1;

базальтовая вата - 9,1.

Предлагаемую композицию и конечный катионообменный волокнистый материал получают следующим образом (свойства катионообменного волокнистого материала представлены в таблице 1).

Пример 1.

Парафенолсульфокислоту при интенсивном перемешивании и постоянном охлаждении вводят в формалин. Затем полученным пропиточным раствором пропитывают базальтовую вату, предварительно подвергнутую термообработке при 400°С в течение 1 часа и последующей СВЧ-обработке в течение 30 секунд при мощности излучения 750 Вт. Пропитку пропиточным раствором проводят в течение 2 минут. Затем поэтапно проводят синтез олигомеров в структуре и на поверхности базальтовой ваты, после этого материал подвергают грубому измельчению, проводят сушку, осуществляют отверждение материала с формированием сетчатой трехмерной структуры. Полученный катионообменный волокнистый материал измельчают. Затем проводят отмывку полученного материала и последующее центрифугирование для удаления оставшейся влаги.

Состав композиции, мас.%:

парфенолсульфокислота - 50÷55,8;

формалин - 40,9÷35,1;

базальтовая вата - 9,1.

Пример 2.

Состав композиции и режим СВЧ-обработки базальтовой ваты по примеру 1, отличается тем, что термическую обработку базальтовой ваты проводят при температуре 450°С.

Пример 3.

Состав композиции и режим СВЧ-обработки базальтовой ваты по примеру 1, отличается тем, что термическую обработку базальтовой ваты проводят при температуре 350°С.

Пример 4.

Состав композиции и режим термообработки базальтовой ваты по примеру 1, отличается тем СВЧ-обработку проводят при мощности излучения 180 Вт.

Применение термообработки базальтовой ваты при температуре менее 350°С будет не эффективным, так как поверхность базальтовой ваты в таком случае не достаточно очищается от нанесенного на него апрета, а применение термообработки базальтовой ваты при температуре температуры выше 450°С будет приводить к охрупчиванию и последующему разрушению волокнистого наполнителя. Выход за пределы указанных значений температур приведет к ухудшению основных свойств ионообменного материала

Обработку базальтовой ваты СВЧ-излучением проводят при мощности 750 Вт и 180 Вт в течение 30 секунд. Применение других значений мощностей обработки ваты СВЧ-облучением приводит к снижению основных показателей, что подтверждается экспериментально.

В композиции содержится 9,1% по массе базальтовой ваты. При этом увеличение процентного содержания количества пропиточного раствора в композиции приведет к тому, что часть пропиточного раствора останется не поглощенной базальтовой ватой, в результате чего на поверхности полученного катионообменного волокнистого материала образуется легко удаляемый ионообменный слой, что приводит к перерасходу компонентов пропиточного раствора.

Уменьшение процентного содержания количества пропиточного раствора в композиции приведет к недостаточной пропитке базальтовой ваты, уменьшению доли ионообменной матрицы в катионообменном волокнистом материале. Таким образом, отклонение от заданных значений соотношений компонентов (базальтовая вата - пропиточный раствор) в композиции приводит к снижению комплекса свойств получаемого катионообменного волокнистого материала, что подтверждается экспериментально.

Данная композиция позволяет синтезировать катионообменный волокнистый материал с повышенным комплексом свойств.

В частности, с более низким значением показателя окисляемости фильтрата, снижение данного показателя говорит об уменьшении не прореагировавших низкомолекулярных соединений, которые затем попадают в очищаемую воду; более высоким показателем удельного объема ионообменного полимерного материала, что свидетельствует об увеличении пористости, поверхности контакта катионообменного волокнистого материала, повышении доступности функциональных групп, что, в свою очередь, приводит к возрастанию значения динамической обменной емкости - показателя, непосредственно связанного со способностью материала производить очистку загрязненных вод в динамических условиях; повышенным значением показателя осматической стабильности, что указывает на возрастание способности зерен ионита не подвергаться разрушению при многократных изменениях их объема в процессе работы.

Источники информации

1. Справочник химика. - Изд. 2-е, пер. и доп. - том 4. / Под ред. Б.П.Никольского. - М.: Химия. - 1966.

2. Технология пластических масс / под ред. В.В.Коршака. - М.: Химия, 1972. - 616 с.

Таблица 1. Характеристика прототип пример 1 пример 2 пример 3 пример 4 1 Плотность, кг/м3 1570 1350 1415 1475 1390 2 Статическая обменная емкость, мг-экв/г 3,6 2,7 2,3 2,0 2,4 3 Окисляемость фильтрата 1,83 1,7 1,7 1,75 1,8 4 Удельный объем ионита в Н-форме, см3 3,2 4,4 3,9 3,7 4 5 Динамическая обменная емкость, мг·моль/дм3 565 920 716 650 765 6 Осмотическая стабильность, % 92 99 97 98 99

Похожие патенты RU2447103C2

название год авторы номер документа
КОМПОЗИЦИЯ ДЛЯ ПОЛУЧЕНИЯ КАТИОНООБМЕННОГО ВОЛОКНИСТОГО МАТЕРИАЛА 2013
  • Устинова Татьяна Петровна
  • Пенкина Наталия Александровна
  • Александров Владимир Александрович
  • Варюхин Василий Владимирович
  • Розов Роман Михайлович
RU2524393C1
СПОСОБ ПОЛУЧЕНИЯ ПОЛИМЕРНОГО ПРЕСС-МАТЕРИАЛА 2011
  • Кардаш Марина Михайловна
  • Александров Георгий Валентинович
  • Тюрин Иван Александрович
  • Терин Денис Владимирович
RU2471822C1
СПОСОБ ПОЛУЧЕНИЯ ПОЛИМЕРНОЙ ПРЕСС-КОМПОЗИЦИИ 1995
  • Артеменко С.Е.
  • Кардаш М.М.
  • Жуйкова О.Е.
RU2128195C1
СПОСОБ ПОЛУЧЕНИЯ ПОЛИМЕРНОГО ПРЕСС-МАТЕРИАЛА 2013
  • Кардаш Марина Михайловна
  • Тюрин Иван Александрович
  • Терин Денис Владимирович
  • Макаров Борис Сергеевич
RU2508299C1
СПОСОБ ПОЛУЧЕНИЯ ПОЛИМЕРНОЙ ПРЕСС-КОМПОЗИЦИИ 2011
  • Кардаш Марина Михайловна
  • Тюрин Иван Александрович
  • Александров Георгий Валентинович
  • Макаров Борис Сергеевич
RU2463314C1
КОМПОЗИЦИЯ ДЛЯ ПОЛУЧЕНИЯ КАТИОНООБМЕННОЙ СМОЛЫ 2008
  • Устинова Татьяна Петровна
  • Щелокова Александрина Викторовна
  • Сущенко Николай Валерьевич
  • Шантроха Александр Викторович
  • Афонин Анатолий Викторович
RU2381068C1
АДСОРБЦИОННЫЙ МАТЕРИАЛ (5 ВАРИАНТОВ) 1999
  • Шмидт Джозеф Львович
  • Пименов А.В.(Ru)
  • Либерман А.И.(Ru)
RU2162010C1
Сорбционно-фильтрующая загрузка для комплексной очистки воды 2022
  • Сапрыкин Виктор Васильевич
  • Маслюков Александр Петрович
  • Маслюков Владимир Александрович
  • Печкуров Александр Николаевич
  • Подобедов Роман Евгеньевич
  • Яценко Виктория Анатольевна
  • Виноградов Николай Викторович
RU2786774C1
Способ замкнутого водооборота гальванического производства 2020
  • Дронов Евгений Анатольевич
  • Черкасов Александр Николаевич
  • Григорьев Михаил Юрьевич
  • Провоторов Сергей Михайлович
  • Колесников Евгений Александрович
  • Баканев Владимир Витальевич
RU2738105C1
ИОНООБМЕННЫЙ ФИЛЬТРОВАЛЬНЫЙ МАТЕРИАЛ 2000
  • Дербишер В.Е.
  • Даниленко Т.И.
  • Коннова Е.В.
  • Морозенко Т.Ф.
  • Дербишер М.В.
RU2190454C2

Реферат патента 2012 года КОМПОЗИЦИЯ ДЛЯ ПОЛУЧЕНИЯ КАТИОНООБМЕННОГО ВОЛОКНИСТОГО МАТЕРИАЛА

Композиция предназначена для получения катионообменного волокнистого материала, используемого в процессах водоподготовки и при очистке промышленных сточных вод. Композиция также применяется для умягчения и деминерализации воды, в производстве синтетических моющих средств, в лакокрасочной промышленности, промышленности полимерных материалов. Композиция состоит из парафенолсульфокислоты и формалина. Композиция дополнительно содержит наполнитель - базальтовую вату. При этом базальтовую вату предварительно подвергают термообработке в течение 1 часа при температуре 350-450°С и последующей СВЧ-обработке при мощности 180 или 750 Вт в течение 30 секунд. Содержание компонентов следующее, мас.%: парафенолсульфокислота - 50÷55,8, формалин - 40,9÷35,1; базальтовая вата - 9,1. Композиция позволяет синтезировать катионообменный волокнистый материал с повышенным комплексом свойств. В частности, с более низким значением показателя окисляемости фильтрата, более высоким показателем удельного объема катионита, с повышенной динамической обменной емкостью и повышенной осмотической стабильностью катионита. 1 табл., 4 пр.

Формула изобретения RU 2 447 103 C2

Композиция для получения катионообменного волокнистого материала, состоящая из парафенолсульфокислоты и формалина, отличающаяся тем, что дополнительно содержит наполнитель - базальтовую вату, предварительно подвергнутую термообработке в течение 1 ч при температуре 350-450°С и последующей СВЧ-обработке при мощности излучения 180 Вт или 750 Вт в течение 30 с при следующем соотношении исходных компонентов композиции, мас.%:
Парафенолсульфокислота 50-55,8 Формалин 40,9-35,1 Базальтовая вата 9,1

Документы, цитированные в отчете о поиске Патент 2012 года RU2447103C2

US 20030212151 A1, 13.11.2003
ИОНООБМЕННЫЙ ФИЛЬТРОВАЛЬНЫЙ МАТЕРИАЛ 2000
  • Дербишер В.Е.
  • Даниленко Т.И.
  • Коннова Е.В.
  • Морозенко Т.Ф.
  • Дербишер М.В.
RU2190454C2
ЛИННИКОВА Н.А
и др
Изучение возможности получения КОВМ на основе базальтовой нити
Перспективные полимерные композиционные материалы
Альтернативные технологии
Переработка
Применение
Экология
Способ приготовления мыла 1923
  • Петров Г.С.
  • Таланцев З.М.
SU2004A1
- Саратов, 2004, с.260-262
ПЕНКИНА

RU 2 447 103 C2

Авторы

Александров Владимир Александрович

Устинова Татьяна Петровна

Артёменко Серафима Ефимовна

Влазнев Дмитрий Павлович

Даты

2012-04-10Публикация

2010-06-18Подача