Изобретение относится к области синтеза неорганических соединений, а именно к способу синтеза соединений олова, в частности к способу синтеза оксида олова.
Известны способы синтеза оксида олова разложением его соединений, в частности при гидролизе хлорида (RU 2201397 C1). Однако при этом способе требуется использование дополнительных реагентов, а получаемый оксид может содержать продукты неполного разложения предшественника.
Наиболее близким, принятым за прототип, является способ синтеза оксида олова (RU 96117104 A). Окислению подвергают металлический порошок, который подают в печь снизу вверх путем смешения с кислородсодержащим газом в инжекторе.
Основным недостатком данного способа является необходимость использования именно порошка металлического олова, что требует предварительных операций для приготовления порошка из металлических слитков, при проведении которых возможно загрязнение исходного продукта, что существенно усложняет процесс, особенно при синтезе порошка высокочистого оксида олова.
Задачей изобретения является разработка способа, позволяющего использовать товарное металлическое олово в слитках и технический кислород и получать порошок оксида олова незагрязненный примесями, поступающими из аппаратуры, при этом размер зерна порошка не должен превышать 500 мкм.
Техническим результатом изобретения является получение мелкодисперсного высокочистого порошка оксида олова (IV) с размером зерна, не превышающим 500 мкм.
Технический результат достигается тем, что процесс ведут во вращающемся реакторе из кварцевого стекла с контролируемой атмосферой при заданной температуре.
Отличительными признаками способа являются: проведение процесса во вращающемся кварцевом реакторе с контролируемой кислородсодержащей атмосферой.
Без активации реакционной смеси при окислении кислородом на поверхности олова образуется плотная оксидная пленка, препятствующая его дальнейшему окислению, что не позволяет полностью окислить олово. Вращение реактора, приводящее к перемешиванию реакционной смеси, является простым и эффективным приемом, облегчающим полное окисление металла. При окислении олова кислородом выделяется большое количество тепла, что приводит к разогреву реакционной смеси вплоть до разрушения стенок реактора. Управление скоростью подачи кислорода в реакционную смесь позволяет ограничить скорость тепловыделения реакции синтеза оксида олова, что уменьшает возможность локального перегрева реакционной смеси. Контролируемое поступление кислорода в реактор и постоянное перемешивание реакционной смеси за счет вращения реактора значительно уменьшают вероятность локального перегрева и, как следствие, вероятность разрушения стенок реактора. Использование кислорода обусловлено его большей окисляющей способностью и возможностью исключить загрязнение продукта соединениями азота, что особенно важно при синтезе высокочистого оксида олова.
Типичный пример: Синтез порошка оксида олова проводят во вращающемся реакторе с контролируемой атмосферой. В трубчатый кварцевый реактор с рабочим объемом ~0,5 л загружают 0,5 кг олова, включают нагрев реактора. После полного плавления металла включают вращение реактора. Синтез оксида ведут при 350°C и скорости подачи кислорода 10 л/ч в контролируемую атмосферу реактора. Полученный порошок просевают через сито с ячеей 500 мкм. Выход порошка оксида олова с размером зерна не более 500 мкм составляет 90-95%. Основная масса порошка (80-90%) имеет размер зерна не более 150 мкм. Отсевы представляют собой спеки, которые легко разрушаются при механической нагрузке. После измельчения и повторной термической обработки во вращающемся реакторе из отсевов получается порошок с размером зерна не более 500 мкм.
Для установления степени загрязнения полученного предложенным способом порошка оксида олова определялось содержание кремния. Кремний - единственно возможная примесь, поступающая из материала используемой аппаратуры - реактора из высокочистого кварцевого стекла. Содержание кремния определялось с помощью лазерной масс-спектрометрии.
По данным анализов содержание кремния в полученном порошке оксида олова не обнаружено (предел обнаружения 1·10-3) % (мас.).
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ПОЛУЧЕНИЯ ПОРОШКА ОКСИДА ВИСМУТА (III) | 2011 |
|
RU2478081C2 |
СПОСОБ ПОЛУЧЕНИЯ ПОРОШКА ОКСИДА ВИСМУТА (III) | 2008 |
|
RU2385294C2 |
СПОСОБ ПОЛУЧЕНИЯ ПОРОШКА ОКСИДА ВИСМУТА (III) | 2011 |
|
RU2474537C2 |
СПОСОБ ПОЛУЧЕНИЯ ПОРОШКА ОКСИДА ВИСМУТА (III) | 2011 |
|
RU2478080C2 |
СПОСОБ ПОЛУЧЕНИЯ СМЕСИ ОКСИДНЫХ СОЕДИНЕНИЙ ВИСМУТА И ГЕРМАНИЯ | 2008 |
|
RU2394767C1 |
СПОСОБ ПОЛУЧЕНИЯ ПОРОШКА ОКСИДА ЦИНКА | 2010 |
|
RU2450972C1 |
СПОСОБ ПОЛУЧЕНИЯ ВЫСОКОЧИСТОГО МОЛИБДЕНА ДЛЯ РАСПЫЛЯЕМЫХ МИШЕНЕЙ И УСТРОЙСТВО ДЛЯ ЕГО РЕАЛИЗАЦИИ | 2008 |
|
RU2375479C1 |
Способ получения порошка карбида кремния | 2022 |
|
RU2799378C1 |
СПОСОБ ИЗГОТОВЛЕНИЯ КОМПОЗИЦИОННОГО МАТЕРИАЛА ДЛЯ ЭЛЕКТРИЧЕСКИХ РАЗРЫВНЫХ КОНТАКТОВ И МАТЕРИАЛ | 2017 |
|
RU2691452C1 |
Способ получения порошка карбида кремния политипа 4H | 2022 |
|
RU2802961C1 |
Изобретение относится к неорганической химии, а именно к способу получения соединений олова, в частности к способу получения порошка оксида олова (IV). Способ получения оксида олова (IV) путем окисления олова кислородом при нагревании, отличающийся тем, что процесс ведут во вращающемся реакторе с контролируемой атмосферой. Изобретение позволяет использовать товарное металлическое олово в слитках и технический кислород, получать порошок оксида олова, при этом размер зерна порошка не должен превышать 500 мкм. 1 з.п. ф-лы.
1. Способ получения оксида олова (IV) путем окисления олова кислородом при нагревании, отличающийся тем, что процесс ведут во вращающемся реакторе с контролируемой атмосферой.
2. Способ по п.1, отличающийся тем, что используют реактор из кварцевого стекла.
СПОСОБ ПОЛУЧЕНИЯ ОКСИДА МЕТАЛЛА | 1996 |
|
RU2106307C1 |
RU 2008124556 A, 27.12.2009 | |||
JP 2002255515 (A), 11.09.2002. |
Авторы
Даты
2012-05-20—Публикация
2010-07-28—Подача