ВЫСОКОПРОЧНЫЙ АЛЮМИНИЕВЫЙ СПЛАВ И СПОСОБ ЕГО ПОЛУЧЕНИЯ Российский патент 2012 года по МПК C22C21/10 C22C21/12 C22C21/08 C22C1/03 

Описание патента на изобретение RU2451097C1

Изобретение относится к области металлургии, в частности к высокопрочным сплавам на основе системы Al-Zn-Mg-Cu, предназначенным для изготовления прессованных, кованых и катаных полуфабрикатов, особенно с массивными сечениями, применяемым для нагруженных силовых деталей самолетов и ракет, грузовых и легковых автомобилей, морских и речных судов, сельскохозяйственной техники.

Развитие за последние 25-30 лет авиации, ракетной, космической и других областей техники потребовало новых более прочных материалов, дающих возможность создания легких и долговечных конструкций. Одними из основных конструкционных материалов остались алюминиевые сплавы, но качество их существенно повысилось. Их практическое применение показало, что можно значительно улучшить прочностные свойства алюминиевых сплавов, их вязкость, пластичность, сопротивляемость переменным нагрузкам, если по возможности снизить в них содержание примесей, неметаллических включений и растворенных в них газов (водорода), уменьшить размеры зерна и оптимизировать соотношения легирующих элементов в сплаве.

Малая плотность алюминиевых сплавов способствует образованию газовых раковин и пористости, так как газы легко проникают в металлическую среду и насыщают ее. Алюминий легко окисляется. Очищать расплав от шлака и окислов трудно. Шлак и окислы остаются в расплаве в мелкораздробленном виде во взвешенном состоянии, что в значительной степени влияет на качество сплава. Процесс обогащения расплава окисными включениями и насыщения водородом резко интенсифицируется, если на поверхности ванны расплава в процессе плавки происходит нарушение целостности окисной пленки. Рациональный подбор оборудования и технологических процессов, в частности вакуумирования, стабильно гарантируют значительное снижение в алюминиевых сплавах примесей, неметаллических включений и водорода, а также уменьшения величины зерна. Известны отражательные электрические печи (печи сопротивления), которые в настоящее время в основном используются в качестве миксеров. Данные печи позволяют минимизировать разрушение окисной пленки, находящейся на поверхности расплава, так как отсутствуют турбулентные движения на поверхности ванны расплава в процессе плавки, что, в свою очередь, препятствует поглощение водорода расплавом и препятствует попаданию отдельных частей окисной пленки в расплав. Несмотря на их низкую экономичность печи сопротивления, при определенных условиях, например, при высоких требованиях к качеству металла, целесообразно использовать в качестве плавильных агрегатов.

Уменьшение размера зерна в алюминиевых сплавах повышает как технологичность производства алюминиевых изделий, так и их эксплуатационные свойства. В последние годы все более распространенной практикой является оптимальный подбор лигатур (модификаторов) и технологии их введения в расплав для получения структуры металла с мелкими равноосными зернами.

Контроль соотношения легирующих элементов в расплаве позволяет ограничить образование вредных интерметаллических соединений в расплаве.

Наиболее близким аналогом, взятым за прототип, является высокопрочный сплав на основе алюминия (Патент РФ №2165995, МПК C22C 21/10, публ. 27.04.2001), следующего состава (мас.%):

Цинк 6,35-8,0 Магний 0,5-2,5 Медь 0,8-1,3 Железо 0,06-0,25 Кремний 0,01-0,20 Цирконий 0,07-0,20 Марганец 0,001-0,1 Хром 0,001-0,05 Титан 0,03-0,10 Бериллий 0,0001-0,05

по крайней мере, один элемент из группы щелочноземельных металлов:

Калий 0,0001-0,01 Натрий 0,0001-0,01 Кальций 0,0001-0,01 Алюминий остальное

Данный химический состав сплава не гарантирует получения слитков с оптимальными размерами зерен и не учитывает опасности образования вредных интерметаллических соединений при критических соотношениях легирующих элементов, ограничивающих технологические и прочностные свойства сплава.

Известны способы плавки, рафинирования, дегазации и модифицирования алюминиевых сплавов (Литейное производство цветных и редких металлов, Курдюмов А.В. и др., М.: Металлургия, 1982 г., с.219-238) - прототип.

В данных способах не учитываются потенциальные возможности производства высокопрочных алюминиевых сплавов, позволяющие рациональным подбором технологических процессов и стандартного печного оборудования качественно повысить потребительские свойства сплавов при приемлемых экономических затратах.

Задачей, на решение которой направлено предлагаемое изобретение, является создание сплава с улучшенными технологическими и эксплуатационными характеристиками, а также технологии, гарантирующей стабильное получение высококонкурентоспособных сплавов на основе системы Al-Zn-Mg-Cu на типовом металлургическом оборудовании.

Техническим результатом, достигаемым при осуществлении изобретения, является разработка сплава со стабильными свойствами и оптимальным размером зерна, доступного для промышленного производства без избыточно усложненного оборудования или технологий, на базе стандартного печного и технологического оборудования, способ гарантирует получение высокопрочных алюминиевых сплавов с отсутствием первичных интерметаллидов, пониженным содержанием в них неметаллических включений и растворенных газов (водорода).

Указанный технический результат достигается тем, что высокопрочный сплав на основе алюминия содержит компоненты в следующем соотношении, мас.%:

Цинк 6,35-8,0 Магний 0,5-2,5 Медь 0,8-1,3 Железо 0,02-0,25 Кремний 0,01-0,20 Цирконий 0,07-0,20 Марганец 0,001-0,1 Хром 0,001-0,05 Титан 0,01-0,10 Бор 0,0002-0,008

по крайней мере, один элемент из группы щелочноземельных металлов:

Калий 0,0001-0,01 Натрий 0,0001-0,01 Кальций 0,0001-0,01 Алюминий остальное

сплав дополнительно содержит 0,0001-0,05% бериллия, при этом сумма основных легирующих элементов (цинк, магний, медь) находится в пределах 8,5-11,0%, сумма циркония, марганца, хрома находится в пределах 0,1-0,35, а титан и бор образуют в сплаве мелкодисперсные кристаллы диборида титана.

Технический результат обеспечивается способом получения высокопрочного алюминиевого сплава, включающим загрузку и плавление компонентов шихты в отражательных печах, рафинирование расплава флюсом, последующую вакуумную обработку расплава в миксере и отливку слитков, плавление компонентов шихты осуществляют в отражательных электроплавильных печах сопротивления, вакуумную обработку расплава в миксере проводят при температуре 695-720°C в течение 45-90 минут, при этом не менее чем за час до перелива металла в вакуумный миксер по всей площади подины миксера распределяется лигатуру Al-Ti-B, миксер предварительно разогревают на 15-30°C выше температуры литья.

Добавление бора, который вводится в сплав в составе лигатуры алюминий-титан-бор (AlTiB), обеспечивает эффективное измельчение зерна алюминиевых сплавов за счет введения в расплав мелкодисперсных кристаллов диборида титана, служащих центрами кристаллизации. Ввод данной лигатуры приводит к улучшению механических свойств и уменьшению газовой пористости.

Легирующие элементы Zn, Mg, Cu оказывают наибольшее влияние на свойства сплава, и их рациональный подбор во многом определяет его прочностные и технологические свойства. Их суммарное содержание менее 8,5% не гарантирует получение сплава со стабильными свойствами, суммарное содержание легирующих элементов более 11,5% создает предпосылки для образования интерметаллидов, таких как Al2CuMg (фаза S), что неблагоприятно влияет на пластичность, трещиностойкость и усталостную прочность.

Наличие циркония и хрома с одновременным ограничением марганца (суммарный заявленный диапазон 0,1-0,35%) обеспечивает наиболее благоприятные условия формирования и стабилизации сплава. Ограничение марганца вызвано тем, что марганец имеет малую скорость диффузии в алюминии, что приводит к образованию аномально пересыщенных твердых растворов и сильно выраженной внутридендритной ликвации. Марганец из-за малой скорости диффузии приводит к получению крупного рекристаллизованного зерна, размер которого можно уменьшить дополнительным легированием, в частности введением циркония и хрома, которые обеспечивают формирование и стабилизацию однородной структуры.

В целях уменьшения окисления при повышенных температурах и для улучшения текучести алюминиевый сплав дополнительно легируется бериллием в количестве 0,0001-0,05%.

Вакуумирование расплава в миксере проводят в температурном интервале от 695°C до 720°C для достижения наибольшего эффекта вакуумирования. Это связано с тем, что в алюминиевых сплавах часть водорода связана в гидриды легирующих элементов, имеющие наибольшую устойчивость при температурах 650-690°C. В температурном интервале от 695°C до 720°C происходит интенсивное разложение гидридов с выделением водорода. Вакуумирование при температурах ниже нижнего предела не обеспечивает необходимого результата. Превышение верхнего предела температурного интервала выше 720°C не рационально ввиду того, что перегревы расплава приводят к росту зерна в слитках в результате дезактивации модифицирующих частиц, что повышает склонность к горячим трещинам при литье и ухудшает технологичность слитков при обработке давлением.

Перед процессом вакуумирования в расплав вводят лигатуры Al-Ti-B, которая не менее чем за час до перелива металла в вакуумный миксер размещается по всей площади подины миксера (миксер предварительно разогревается на 15-30°C выше температуры литья), что позволяет нагретой лигатуре эффективно растворится в расплаве.

Введение лигатуры Al-Ti-B на стадии технологической операции вакуумирования сплава гарантирует равномерное растворение лигатуры при сохранении эффекта измельчения зерна производимого сплава. Эффект измельчения зерна сохраняется до 6 часов после ввода лигатуры, это, с одной стороны, существенно меньше времени отливки слитков, а с другой стороны, данный временной диапазон позволяет равномерно распределится лигатуре в объеме расплава.

Промышленная применяемость заявленного изобретения подтверждается следующими примерами конкретного выполнения.

Для проведения экспериментов были отлиты по 3 слитка (прототип и предлагаемый сплав), в таблице 1 в п.1 дан усредненный химический состав сплава прототипа, в п.2 предлагаемого сплава.

Таблица 1 № п/п Химический состав, % мас. Zn Mg Cu Fe Si Zr Mn Cr Ti Be B K Na Ca Al 1 6,7 2,02 1,2 0,18 0,08 0,15 0,05 0,03 0,06 0,0003 - 0,001 0,001 0,003 Основа 2 6,3 2,2 1,05 0,12 0,04 0,10 0,04 0,02 0,04 0,0002 0,0002 0,002 0,001 0,001

Сплавы были изготовлены по следующей технологии

1. Расчет шихты был проведен в соответствии с настоящим изобретением.

2. Взвешивание шихты и подача ее на печь.

3. Загрузка шихты, плавление, приготовление сплава, отбор проб на экспресс-анализ.

Приготовление сплава осуществлялось:

- прототипа в газовой отражательной печи;

- заявленного сплава в отражательных электроплавильных печах сопротивления САН-10.

4. Слив и рафинирование расплава.

Рафинирование расплава плавленым криолитсодержащим флюсом проводилось в литейном ковше.

5. Вакуумирование расплава.

Вакуумирование расплава проводится в вакуумных миксерах с целью снижения содержания водорода. Вакуумирование расплава, в среднем, продолжалось в течение 60 минут при температуре 700-720°C. Дополнительно, при изготовлении предлагаемого сплава, за час до перелива металла в вакуумный миксер по всей площади подины миксера, предварительно нагретого на 15-30°C выше температуры литья сплава, была равномерно размещена лигатура Al-Ti-B.

6. Приготовление к литью и отливка слитков.

Отливка слитков производится на установках полунепрерывного литья, состоящих из миксера и литейной машины, в кристаллизаторы скольжения.

7. Отбор проб на химический анализ.

8. Клеймение слитков.

9. Взвешивание отлитых слитков, шлака.

10. Гомогенизация слитков.

Гомогенизация слитков сплава проводится в шахтных электропечах сопротивления с принудительной циркуляцией воздуха.

11. Мехобработка слитков.

12. Макроконтроль, отбор образцов для определения содержания водорода и затухание ультразвукового сигнала.

13. Далее из слитков были изготовлены профили толщиной 80 мм.

14. Профили были подвергнуты термической обработке по следующему режиму: закалка - температура нагрева 470°C, время выдержки - 70 минут, охлаждение в воде; старение двухступенчатое по режиму 110-120°C, 12 час + 160-170°C, 6 час.

Прочностные свойства и вязкость разрушения сплавов определяли на стандартных образцах, в продольном (Д или ДП) и высотном (В или ВД) направлениях относительно направления волокна. Усредненные свойства представлены в таблице 2 (№1 - прототип, №2 - предлагаемый сплав).

Таблица 2 № п/п σв, МПа σв, МПа δ, % Kic, МПа√м Д В Д В Д В ДП ДВ 1 522 483 468 425 13,6 4,5 138 70 2 531 504 476 452 15,9 7,8 152 83

Качество металла слитка и профиля также подтверждается результатами исследований, приведенными в таблице 3 (№1 - прототип, №2 - предлагаемый сплав).

Таблица 3 № п/п Содержание водорода, см3/100 г Загрязненность, мм2/см2 Коэффиц. затухания, дБ/см Размер зерна слитка, мкм Количество дефектов УЗК в профилях шт./погон.м 1 0,16 0,021 1,8 560 16 2 0,12 0,018 1,5 240 2

Способ рекомендуется применять для производства слитков деформируемых сплавов ответственного назначения, в частности используемых в авиакосмических технологиях.

Похожие патенты RU2451097C1

название год авторы номер документа
СПОСОБ ИЗГОТОВЛЕНИЯ КРУПНОГАБАРИТНЫХ СЛИТКОВ ПРЯМОУГОЛЬНОГО СЕЧЕНИЯ ИЗ ВЫСОКОПРОЧНЫХ АЛЮМИНИЕВЫХ СПЛАВОВ СИСТЕМЫ Al-Zn-Mg-Cu-Zr 2014
  • Ефремов Вячеслав Петрович
  • Тимохов Сергей Николаевич
  • Кузеванов Сергей Александрович
  • Бабинов Андрей Анатольевич
RU2561581C1
ВЫСОКОПРОЧНЫЙ СПЛАВ НА ОСНОВЕ АЛЮМИНИЯ И ИЗДЕЛИЕ, ВЫПОЛНЕННОЕ ИЗ НЕГО 2000
  • Фридляндер И.Н.
  • Каблов Е.Н.
  • Сенаторова О.Г.
  • Легошина С.Ф.
  • Самонин В.Н.
  • Сухих А.Ю.
  • Кохорст Иоганнес
RU2184166C2
ВЫСОКОПРОЧНЫЙ ТЕРМОСТОЙКИЙ МЕЛКОЗЕРНИСТЫЙ СПЛАВ НА ОСНОВЕ СИСТЕМЫ Al-Cu-Mn-Mg-Sc-Nb-Hf И ИЗДЕЛИЕ ИЗ НЕГО 2020
  • Арышенский Евгений Владимирович
  • Арышенский Владимир Юрьевич
  • Яшин Василий Владимирович
  • Дриц Александр Михайлович
  • Гречников Федор Васильевич
RU2747180C1
ВЫСОКОПРОЧНЫЙ СПЛАВ НА ОСНОВЕ АЛЮМИНИЯ И ИЗДЕЛИЕ, ВЫПОЛНЕННОЕ ИЗ НЕГО 2014
  • Сенаторова Ольга Григорьевна
  • Каблов Евгений Николаевич
  • Антипов Владислав Валерьевич
  • Сомов Андрей Валерьевич
  • Блинова Надежда Евгеньевна
RU2556849C1
ВЫСОКОПРОЧНЫЙ ДЕФОРМИРУЕМЫЙ СПЛАВ НА ОСНОВЕ АЛЮМИНИЯ С ПОНИЖЕННОЙ ПЛОТНОСТЬЮ И СПОСОБ ЕГО ОБРАБОТКИ 2011
  • Елагин Виктор Игнатович
  • Захаров Валерий Владимирович
  • Ростова Татьяна Дмитриевна
  • Швечков Евгений Иванович
  • Фисенко Ирина Антонасовна
  • Кириллова Лидия Петровна
RU2468107C1
СОСТАВ СВАРОЧНОЙ ПРОВОЛОКИ НА ОСНОВЕ АЛЮМИНИЯ 2009
  • Павлова Вера Ивановна
  • Орыщенко Алексей Сергеевич
  • Осокин Евгений Петрович
  • Зыков Сергей Алексеевич
  • Кучкин Василий Васильевич
RU2393073C1
Свариваемый сплав на основе алюминия для противометеоритной защиты 2016
  • Мироненко Виктор Николаевич
  • Васенев Валерий Валерьевич
  • Карпова Жанна Александровна
  • Клишин Александр Федорович
  • Сыромятников Сергей Алексеевич
  • Тулин Дмитрий Владимирович
  • Еремеев Владимир Викторович
  • Еремеев Николай Владимирович
  • Тарарышкин Виктор Иванович
RU2614321C1
Высокопрочный деформируемый сплав на основе алюминия системы Al-Zn-Mg-Cu и изделие из него 2015
  • Филатов Юрий Аркадьевич
  • Тарануха Галина Владимировна
  • Захаров Валерий Владимирович
  • Чугункова Галина Михайловна
  • Байдин Николай Григорьевич
  • Панасюгина Людмила Ивановна
  • Шадаев Денис Александрович
  • Нилов Евгений Евгеньевич
  • Махов Сергей Владимирович
  • Напалков Виктор Иванович
RU2613270C1
Сплав на основе алюминия для сварочной проволоки 2017
  • Игонькин Борис Львович
  • Захаров Валерий Владимирович
  • Филатов Юрий Аркадьевич
  • Дриц Александр Михайлович
  • Осокин Евгений Петрович
  • Овчинников Виктор Васильевич
  • Пономарев Станислав Олегович
RU2663446C1
СПЛАВ НА ОСНОВЕ АЛЮМИНИЯ 2022
  • Манн Виктор Христьянович
  • Крохин Александр Юрьевич
  • Рябов Дмитрий Константинович
  • Вахромов Роман Олегович
  • Градобоев Александр Юрьевич
  • Иванова Анна Олеговна
  • Никитина Маргарита Александровна
RU2800435C1

Реферат патента 2012 года ВЫСОКОПРОЧНЫЙ АЛЮМИНИЕВЫЙ СПЛАВ И СПОСОБ ЕГО ПОЛУЧЕНИЯ

Изобретение относится к получению высокопрочных алюминиевых сплавов системы Al-Zn-Mg-Cu, предназначенных для изготовления прессованных, кованых и катаных полуфабрикатов. Сплав на основе алюминия содержит, мас.%: цинк - 6,35-8,0, магний - 0,5-2,5, медь - 0,8-1,3, железо - 0,02-0,25, кремний - 0,01-0,20, цирконий - 0,07-0,20, марганец - 0,001-0,1, хром - 0,001-0,05, титан - 0,01-0,10, бор - 0,0002-0,008, бериллий - 0,0001-0,05, по крайней мере один элемент из группы калий, натрий, кальций в количестве 0,0001-0,01 каждого, алюминий - остальное, при суммарном содержании цинка, магния, меди в пределах 8,5-11,0, циркония, марганца, хрома - в пределах 0,1-0,35. Способ включает загрузку и плавление компонентов шихты, обработку расплава флюсом, рафинирование расплава, последующую вакуумную обработку расплава в миксере и отливку слитков, бор вводят в расплав в виде лигатуры Al-Ti-B, которую не менее чем за час до перелива расплава в миксер распределяют по всей площади подины миксера, при этом миксер предварительно разогревают до температуры на 15-30°C выше температуры расплава, а вакуумную обработку расплава в миксере проводят при температуре 695-720°C в течение 45-90 минут. Изобретение позволяет получить высокопрочные алюминиевые сплавы с отсутствием первичных интерметаллидов, пониженным содержанием в них неметаллических включений и растворенных газов, со стабильными свойствами и оптимальным размером зерна на базе стандартного печного и технологического оборудования. 2 н.п. ф-лы, 3 табл.

Формула изобретения RU 2 451 097 C1

1. Высокопрочный алюминиевый сплав, содержащий цинк, магний, медь, железо, кремний, цирконий, марганец, хром, титан, бор и по крайней мере один элемент из группы щелочноземельных металлов - калий, натрий, кальций, отличающийся тем, что дополнительно содержит бериллий при следующем соотношении компонентов, мас.%:
Цинк 6,35-8,0 Магний 0,5-2,5 Медь 0,8-1,3 Железо 0,02-0,25 Кремний 0,01-0,20 Цирконий 0,07-0,20 Марганец 0,001-0,1 Хром 0,001-0,05 Титан 0,01-0,10 Бор 0,0002-0,008 Бериллий 0,0001-0,05


по крайней мере, один элемент из группы щелочноземельных металлов:
Калий 0,0001-0,01 Натрий 0,0001-0,01 Кальций 0,0001-0,01 Алюминий Остальное,

при суммарном содержании основных легирующих элементов цинка, магния, меди в пределах 8,5-11,0 мас.% и суммарном содержании циркония, марганца, хрома в пределах 0,1-0,35 мас.%, а титан и бор содержатся в сплаве в виде мелкодисперсных кристаллов диборида титана.

2. Способ получения высокопрочного алюминиевого сплава, включающий загрузку и плавление компонентов шихты в отражательных электроплавильных печах сопротивления, введение бора в расплав в виде лигатуры Al-Ti-B, обработку расплава флюсом, рафинирование расплава, последующую вакуумную обработку расплава в миксере и отливку слитков, отличающийся тем, что лигатуру Al-Ti-B вводят в расплав перед вакуумной обработкой расплава в миксере, причем лигатуру не менее чем за час до перелива расплава в миксер размещают по всей площади подины миксера, который предварительно разогревают до температуры на 15-30°C выше температуры расплава, а вакуумную обработку расплава в миксере проводят при температуре 695-720°C в течение 45-90 мин.

Документы, цитированные в отчете о поиске Патент 2012 года RU2451097C1

Способ накатывания внутренней резьбы 1974
  • Хохулин Владимир Николаевич
SU476930A1
КУРДЮМОВ А.В
ПРОИЗВОДСТВО ОТЛИВОК ИЗ СПЛАВОВ ЦВЕТНЫХ МЕТАЛЛОВ
- М.: МЕТАЛЛУРГИЯ, 1986, с.114, 123, 125, 127
СПЛАВ НА ОСНОВЕ АЛЮМИНИЯ И ИЗДЕЛИЕ ИЗ НЕГО 2001
RU2215808C2
Способ приготовления мыла 1923
  • Петров Г.С.
  • Таланцев З.М.
SU2004A1

RU 2 451 097 C1

Авторы

Сухих Александр Ювенальевич

Ефремов Вячеслав Петрович

Потехин Александр Васильевич

Кузеванов Сергей Александрович

Тимохов Сергей Николаевич

Даты

2012-05-20Публикация

2010-12-14Подача