СПОСОБ ИЗГОТОВЛЕНИЯ МЕССБАУЭРОВСКОГО ИСТОЧНИКА НА ОСНОВЕ КОБАЛЬТА-57 Российский патент 2012 года по МПК G21G4/06 

Описание патента на изобретение RU2454745C1

Изобретение относится к технологии изготовления источников на основе радионуклида 57Со для ядерной гамма-резонансной (мессбауэровской) спектроскопии.

Ранее описаны способы изготовления мессбауэровских источников на основе кобальта-57 [Nucl. Instr. And Methods, 1964, v. 26, N2, p.269-273, Stephan I.; Nucl. Instr. And Methods, 1967, v. 54, N2, p.105-109, Deji I., Molnar В.; RU 2084981, МПК G21G 4/06, от 25.01.1995], в которых 57Co электролитически осаждают на тонкие (6-12 мкм) фольги различных металлов, а затем при температурах 950-1400°С в течение 2-50 часов проводят диффузионное внедрение радионуклида в металлическую матрицу. Эти способы позволяют получать источники с малой шириной линии испускания (не более 0,13 мм/с) при поверхностной активности 57Co до 500 мКи/см2, однако имеют существенные недостатки:

а) длительный термический отжиг металлических фольг (полученных прокаткой) перед процессом электрохимического осаждения целевого радионуклида для устранения деформационных напряжений кристаллической решетки металла;

б) работа с фольгами достаточно сложна, учитывая, что подготовка к электроосаждению включает в себя изолирование обратной стороны фольги, часть 57Со при этом адсорбируется на изоляторе. Кроме того, тонкие пленки хрома чрезвычайно хрупкие, поэтому изготовление их и работа с ними связаны с большими трудностями.

Некоторые из описанных выше недостатков устраняются в патенте [RU 2254629, МПК G21G 4/06, опубликованный 20.07.1997, БИ №17, от 20.07.2005], в соответствии с которым слой металлической матрицы формируют на поверхности графита или окиси бериллия магнетронным напылением соответствующего металла.

Полученная таким образом металлизированная подложка удобна для дальнейших технологических операций: не требует специальных приспособлений для работы с тонкими фольгами, позволяет использовать щадящий режим термодиффузии радионуклида в матрицу.

Кроме того, метод позволяет получать источники на основе 57Со в матрицах родия или хрома с шириной линии испускания 0,11-0,12 мм/с при поверхностной активности 57Со до 500 мКи/см2.

Данный способ следует рассматривать в качестве прототипа изобретения.

Основной недостаток предложенного метода заключается в сильном внутреннем напряжении конденсированных пленок родия и в особенности хрома, что, в свою очередь, является причиной неконтролируемого механического разрушения покрытия. Иногда это проявляется в наблюдаемом отслаивании, вспучивании и растрескивании пленки. Если этот дефект проявляется в процессе изготовления источников, это приводит к потере дорогостоящего сырья - 57Со. В некоторых случаях этот недостаток выявляется в виде изменения формы линий спектра испускания при эксплуатации источника и уже не может быть устранен.

Кроме того, реализация данного способа требует специального дорогостоящего оборудования.

Поэтому на первое место при выборе метода металлизации выходит его способность реализации надежного сцепления пленочного покрытия с керамической или графитовой подложкой, которая исключила бы островковое отшелушивание и осыпание.

Наилучших результатов в этом направлении можно достигнуть, используя метод химического осаждения из газовой фазы металлсодержащего соединения или сокращенно CVD-процесса (Chemical vapor deposition - химическое осаждение из газовой фазы). Высокая проникающая способность газа в микрорельеф подложки и гетерогенный тип реакции обеспечивают максимальные адгезионные параметры покрытия. Полученные таким способом пленки, даже в случае их растрескивания, не отшелушиваются от подложки и, следовательно, не приводят к ухудшению спектральных характеристик.

Изготовление мессбауэровских источников на основе 57Со начинается с нанесения металлического слоя родия или хрома на поверхность графита или окиси бериллия в реакционном аппарате, в который подается газообразное металлсодержащее соединение. После подачи газообразного соединения происходит разложение последнего на разогретой подложке, вследствие чего на поверхности формируется слой металла. На сформированную таким образом матрицу электролитически наносится радионуклид 57Co с последующей его термодиффузией в вакууме.

Применение CVD-процесса для нанесения матрицы металлического хрома или родия позволяет снизить температуру процесса, а также контролировать толщину слоя металла на поверхности подложки путем регулирования скорости подачи рабочего вещества.

Основными достоинствами предложенного метода в сравнении с прототипом являются:

- прочное сцепление сформированных пленок родия и хрома с подложкой, исключающих деформацию и разрушение матрицы;

- возможность формирования металлической матрицы на поверхностях сложной геометрии;

- низкая стоимость технологического оборудования, использованного в CVD-процессе получения металлических пленок.

Изобретение позволяет получать источники 57Со в матрице родия или хрома с шириной линии испускания не более 0,12 мм/с при поверхностной активности 57Со до 500 мКи/см2 на подложках любой формы и размера.

Технический результат изобретения заключается в возможности изготовления высоконадежных мессбауэровских источников 57Со с пленочной матрицей родия или хрома, не изменяющих свои спектральные характеристики при нарушении ее целостности.

Пример 1.

Подложка из графита устанавливается на нагревательный элемент внутри реакционного аппарата. После достижения вакуума (≤10Па) и температуры нагревательного элемента 300°С в аппарат подается летучее (в данных условиях) металлсодержащее соединение H2Rh(PF3)4. Подача летучего соединения осуществляется с помощью вентиля тонкой регулировки. Так, для достижения толщины слоя родия 10 мкм продолжительность процесса составляет 10 мин.

Полученная подложка после окончания процесса формирования на ней родиевой матрицы помещается в электролитическую ячейку из органического стекла и через силиконовую прокладку уплотняется в ячейке.

В стаканчик объемом 3 мл отбирают необходимое количество солянокислого раствора 57Со, добавляют 1 мл раствора электролита (водный раствор цитрата и сульфата аммония), 2 капли гидразин гидрата и 4 капли 25% раствора аммиака. Раствор перемешивают и вносят пипеткой в электролитическую ячейку с анодом из платины.

Электролиз проводят при плотности тока 100 мА/см2. Через каждый час в ячейку добавляют раствор гидразин гидрата и раствор аммиака. Процесс осаждения длится 2,5 часа. После окончания процесса остатки электролита отбираются из ячейки. Подложку с осажденным на нее 57Со извлекают из ячейки, измеряют ее активность и помещают в кварцевую ампулу.

Кварцевая ампула вакуумируется до давления 10-3Па, а затем проводится термодиффузия 57Со при температуре 1000±10°С в течение 1,5 часов. После диффузионного отжига образец охлаждается с печью до комнатной температуры.

Подложку извлекают из кварцевой ампулы, измеряют ее активность и мессбауэровские характеристики.

Пример 2.

Подложка из окиси бериллия устанавливается на нагревательный элемент внутри реакционного аппарата. После достижения вакуума (≤10 Па) и температуры нагревательного элемента 300°С в аппарат подается летучее (в данных условиях) металлсодержащее соединение Сr(С8Н10)2 (бисэтилбензол-хром). Для улучшения условий формирования хромовой матрицы в исходное соединение вводится хлорсодержащее летучее соединение порядка 1-2 об.% основного металлсодержащего соединения. Подача летучего соединения осуществляется с помощью вентиля тонкой регулировки. Так, для достижения толщины слоя хрома 10 мкм продолжительность процесса составляет 12 мин.

Полученная подложка после окончания процесса формирования на ней родиевой матрицы помещается в электролитическую ячейку из органического стекла и через силиконовую прокладку уплотняется в ячейке.

В стаканчик объемом 3 мл отбирают необходимое количество солянокислого раствора 57Со, добавляют 1 мл раствора электролита (водный раствор цитрата и сульфата аммония), 2 капли гидразин гидрата и 4 капли 25% раствора аммиака. Раствор перемешивают и вносят пипеткой в электролитическую ячейку с анодом из платины.

Электролиз проводят при плотности тока 100 мА/см2. Через каждый час в ячейку добавляют раствор гидразин гидрата и раствор аммиака. Процесс осаждения длится 2,5 часа. После окончания процесса остатки электролита отбираются из ячейки. Подложку с осажденным на нее 57Со извлекают из ячейки, измеряют ее активность и помещают в кварцевую ампулу.

Кварцевая ампула вакуумируется до давления 10-3 Па, а затем проводится термодиффузия 57Со при температуре 1000±10°С в течение 1,5 часов. После диффузионного отжига образец охлаждается с печью до комнатной температуры.

Подложку извлекают из кварцевой ампулы, измеряют ее активность и мессбауэровские характеристики.

Похожие патенты RU2454745C1

название год авторы номер документа
СПОСОБ ИЗГОТОВЛЕНИЯ МЕССБАУЭРОВСКОГО ИСТОЧНИКА КОБАЛЬТ-57 В МЕТАЛЛИЧЕСКОЙ МАТРИЦЕ 2004
  • Силин М.Ю.
RU2254629C1
СПОСОБ ИЗГОТОВЛЕНИЯ МЕССБАУЭРОВСКОГО ИСТОЧНИКА КОБАЛЬТ-57 В МАТРИЦЕ МЕТАЛЛИЧЕСКОГО РОДИЯ 1995
  • Пеньков Ю.П.
  • Добровольский В.Ф.
RU2084981C1
СПОСОБ ИЗГОТОВЛЕНИЯ РЕЗОНАНСНОГО СЦИНТИЛЛЯЦИОННОГО ДЕТЕКТОРА 2009
  • Сарычев Дмитрий Алексеевич
  • Сташенко Вячеслав Владимирович
  • Новиковский Николай Михайлович
RU2405174C1
СПОСОБ ПРИГОТОВЛЕНИЯ ЦИКЛОТРОННЫХ МИШЕНЕЙ И ИСТОЧНИКОВ РАДИОАКТИВНОГО ИЗЛУЧЕНИЯ И УСТРОЙСТВО ДЛЯ ЕГО РЕАЛИЗАЦИИ 2006
  • Жуйков Борис Леонидович
  • Букланов Герман Владимирович
RU2310249C1
СИНТЕТИЧЕСКИЙ РАДИОАКТИВНЫЙ НАНОАЛМАЗ И СПОСОБ ЕГО ПОЛУЧЕНИЯ 2013
  • Долматов Валерий Юрьевич
  • Горбунов Евгений Константинович
RU2543184C2
ЗАКРЫТЫЙ РАДИОАКТИВНЫЙ ИСТОЧНИК И СПОСОБ ЕГО ПРИГОТОВЛЕНИЯ 1995
  • Радько В.Е.
RU2098876C1
СПОСОБ ИЗГОТОВЛЕНИЯ РАДИОНУКЛИДНЫХ ИСТОЧНИКОВ ИОНИЗИРУЮЩЕГО ИЗЛУЧЕНИЯ НА ОСНОВЕ ТАЛЛИЯ 1990
  • Гарбузов В.М.
  • Павлов И.Ю.
  • Рогозовец В.Г.
  • Шахетов Г.В.
SU1738007A1
СПОСОБ ИЗГОТОВЛЕНИЯ ИСТОЧНИКА ПОЗИТРОНОВ 2004
  • Краснов Николай Николаевич
  • Леонов Анатолий Ильич
  • Павлихин Виктор Евгеньевич
  • Разбаш Анатолий Анатольевич
  • Севастьянов Юрий Григорьевич
  • Толстоухов Юрий Витальевич
RU2278431C2
ИСТОЧНИК НА ОСНОВЕ РАДИОНУКЛИДОВ ЙОДА И СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ 2002
  • Балуев А.В.
  • Митяхина В.С.
  • Коновалов П.М.
  • Федоров В.В.
  • Галкин Б.Я.
  • Михайлов А.А.
  • Безносюк В.И.
RU2228555C2
МЕДНАЯ ФОЛЬГА ЭЛЕКТРОЛИТИЧЕСКОГО ОСАЖДЕНИЯ И СПОСОБ ЕЕ ИЗГОТОВЛЕНИЯ 1994
  • Дино Ф.Дифранко
  • Сиу-Као Чианг
  • Крейг Дж.Хасегава
RU2122049C1

Реферат патента 2012 года СПОСОБ ИЗГОТОВЛЕНИЯ МЕССБАУЭРОВСКОГО ИСТОЧНИКА НА ОСНОВЕ КОБАЛЬТА-57

Изобретение относится к технологии изготовления источников на основе радионуклида 57Со для ядерной гамма-резонансной (мессбауэровской) спектроскопии. Способ включает нанесение родия или хрома на поверхность подложки из графита или окиси бериллия при помощи метода химического осаждения из газовой фазы летучих металлсодержащих соединений или сокращенно CVD-процесса (Chemical vapor deposition - химическое осаждение из газовой фазы) с последующим электролитическим осаждением радионуклида 57Со на поверхность подложки. Способ позволяет получать источники 57Со с шириной линии испускания не более 0,12 мм/с при поверхностной активности 57Со до 500 мКи/см2 в металлической матрице на подложках любой формы.

Формула изобретения RU 2 454 745 C1

Способ изготовления мессбауэровского источника на основе 57Со, включающий электролитическое осаждение 57Со на металлическую матрицу из родия или хрома, сформированную на поверхности графита или окиси бериллия, и последующую термодиффузию 57Со в металл, отличающийся тем, что металлическую матрицу формируют на поверхности подложки методом химического осаждения из газовой фазы металлсодержащего соединения.

Документы, цитированные в отчете о поиске Патент 2012 года RU2454745C1

СПОСОБ ИЗГОТОВЛЕНИЯ МЕССБАУЭРОВСКОГО ИСТОЧНИКА КОБАЛЬТ-57 В МЕТАЛЛИЧЕСКОЙ МАТРИЦЕ 2004
  • Силин М.Ю.
RU2254629C1
СПОСОБ ИЗГОТОВЛЕНИЯ МЕССБАУЭРОВСКОГО ИСТОЧНИКА КОБАЛЬТ-57 В МАТРИЦЕ МЕТАЛЛИЧЕСКОГО РОДИЯ 1995
  • Пеньков Ю.П.
  • Добровольский В.Ф.
RU2084981C1
Топливный бак транспортного средства 1984
  • Банников Евгений Леонидович
  • Ермилов Валерий Алексеевич
  • Кайданский Эдуард Иванович
  • Кондратов Владимир Викторович
  • Петрушев Олег Борисович
SU1162626A1
Система управления силовыми установками 1982
  • Гудков Валерий Александрович
  • Шубладзе Александр Михайлович
  • Ситников Александр Павлович
  • Молчанов Гений Георгиевич
  • Васильчук Леонид Иванович
  • Бушуев Николай Васильевич
  • Уланов Александр Георгиевич
  • Силанчев Вячеслав Петрович
  • Морозов Виталий Пантелеймонович
  • Гуляев Сергей Викторович
SU1084733A1

RU 2 454 745 C1

Авторы

Покровский Юрий Германович

Цирлин Владимир Абрамович

Лейкина Ольга Сергеевна

Даты

2012-06-27Публикация

2011-02-28Подача