СПОСОБ ИНТЕГРИРУЮЩЕГО АНАЛОГО-ЦИФРОВОГО ПРЕОБРАЗОВАНИЯ НАПРЯЖЕНИЯ Российский патент 2012 года по МПК H03M1/52 

Описание патента на изобретение RU2457617C1

Изобретение относится к электроизмерительной технике. Цель изобретения - повышение быстродействия.

Известны способы интегрирующего аналого-цифрового преобразования напряжения: патент ФРГ №2214602, кл. G01R 19/26, 04.09.75; Орнатский П.П. Автоматические измерения и приборы. Киев: Вища школа, 1973, с.435-437. В данных способах имеют место пропуски информации о входном напряжении.

Среди всех способов, осуществляющих аналого-цифровое преобразование без пропусков информации и представленных в статье Шахов Э.К., Ашанин В.Н., Надев А.И. «Реализация концепций ΔΣ-АЦП в интегрирующих АЦП с другими видами импульсной модуляции» / Известия высших учебных заведений (Поволжский регион). Пенза: ПГУ, 2006, №6, С.226-237, наиболее близким является способ интегрирующего аналого-цифрового преобразования напряжения, представленный на Фиг.1 (временная диаграмма, поясняющая рассматриваемый способ). На Фиг.2 показана структурная схема устройства для его осуществления.

Данный способ интегрирующего аналого-цифрового преобразования основан на формировании последовательности временных тактов преобразования фиксированной длительности, в каждом из которых формируют две развертывающие функции, выделяют информативный интервал времени и преобразуют информативные интервалы времени в цифровой код, причем для формирования первой развертывающей функции с момента времени, соответствующего началу каждого такта преобразования, осуществляют интегрирование суммы входного напряжения и опорного напряжения положительной полярности и вычитание из положительного порогового напряжения текущего интегрального значения, а для формирования второй развертывающей функции осуществляют интегрирование суммы входного напряжения и опорного напряжения отрицательной полярности и с момента времени, соответствующего равенству значений развертывающих функций, фиксируют значение первой развертывающей функции равным значению положительного порогового напряжения, а для формирования второй развертывающей функции осуществляют интегрирование суммы входного напряжения и опорного напряжения положительной полярности, длительность информативных интервалов времени определяют как разность интервалов времени интегрирования опорных напряжений положительной и отрицательной полярности соответственно.

В соответствии с Фиг.1 R1(t) - первая развертывающая функция, R2(t) - вторая развертывающая функция. В т. A[i] значения первой и второй развертывающих функции равны R1(t)=R2(t). На Фиг.1 показан случай изменения входного напряжения от нулевого значения до значения Ux, выделены моменты переключений значений опорных напряжений (+U0) и (-U0): T1[1]…T1[4] - интервалы времени от начала временного такта преобразования фиксированной длительности (равной T0) до момента времени равенства первой и второй развертывающей функции, T2[1]…T2[4] - интервалы времени от момента времени равенства первой и второй развертывающей функции до момента времени начала следующего временного такта преобразования фиксированной длительности. Длительность информативных интервалов ΔT времени определяют как разность интервалов T2[i], T1[i] времени интегрирования опорных напряжений положительной и отрицательной полярности соответственно (ΔT=T2[i]-T1[i], где i - номер временного такта преобразования фиксированной длительности). Рассмотрим данный способ на примере устройства, осуществляющего измерение постоянного напряжения.

Устройство, показанное на Фиг.2, содержит основной 1 и вспомогательный 2 интеграторы, управляемый переключатель 3 опорных напряжений, компаратор 4, операционный усилитель 5, формирователь 6 порогового уровня, источник опорного напряжения 7 (ИОН), генератор 8 опорной частоты (ГОЧ), устройство 9 управления, управляемый ключ 10 и вычислительное устройство 11 (ВУ). Причем выход переключателя 3 соединен с входом 1 основного интегратора 1, а его входы с источником опорного напряжения 7 и УУ 9; на вход 2 основного интегратора 1 и на вход 1 вспомогательного интегратора 2 подается входное напряжение; на вход 2 вспомогательного 2 интегратора постоянно подается положительное опорное напряжение с источника опорного напряжения 7; выходы основного и вспомогательного интеграторов соединены соответственно с входами 1 и 2 компаратора 4, который подает сигнал управления на вход 1 УУ 9; УУ 9 управляет работой переключателя 3, ключа 10 и ВУ 11; на вход 2 УУ 9 и вход 1 ВУ 11 подается опорная частота с ГОЧ 8; выход ОУ 5 через ключ 10 соединен с входом 3 интегратора 2; формирователь 6 порогового уровня подает величину порогового напряжения на вход 2 операционного усилителя 5.

Развертывающая функция R2(t) формируется интегратором 1, а развертывающая функция R1(t) - интегратором 2. Момент равенства развертывающих функций (т.A) фиксируется компаратором 4. В этот же момент (т.A) интегратор 2 через ключ 10 охватывается обратной связью и значение развертывающей функции R1(t) становится равным пороговому напряжению Un. Полярность опорного напряжения U0 переключается в начале каждого такта преобразования фиксированной длительности T0, а также в моменты срабатывания компаратора 4.

Генератором 8 опорной частоты формируется последовательность временных тактов преобразования фиксированной длительности T0, в каждом из которых формируются две развертывающие функции. Первая развертывающая функция R1(t) формируется интегратором 2 и операционным усилителем 5 следующим образом: с начала такта преобразования фиксированной длительности значения R1(t) формируются путем вычитания из положительного порогового напряжения UП текущего интегрального значения суммы входного Ux и опорного U0 напряжений; с момента равенства развертывающих функций (т.A), фиксируемого компаратором 4, R1(t) устанавливается равной UП до конца текущего такта Т0 за счет замыкания ключа 10. Вторая развертывающая функция R2(t) формируется интегратором 1 путем интегрирования разности входного Ux и опорного U0 напряжений с начала такта преобразования фиксированной длительности Т0 до момента равенства развертывающих функций (т.A) и интегрирования суммы входного Ux и опорного U0 напряжений от т.A и до конца текущего такта Т0 за счет подключения отрицательного или положительного опорного напряжений источника 7 с помощью ключа 3 в моменты времени начала очередного текущего такта Т0 или срабатывания компаратора 4 соответственно. Длительность информативных интервалов времени ΔT0 определяют в вычислительном устройстве 11 как разность интервалов времени (T1[i] и T2[i]) интегрирования опорных напряжений положительной и отрицательной полярности в процессе формирования второй развертывающей функции соответственно.

Основной недостаток данного способа и, следовательно, устройства заключается в наличии переходного процесса при изменении входного напряжения (см. Шахов Э.К., Ашанин В.Н., Надев А.И. «Реализация концепций ΔΣ-АЦП в интегрирующих АЦП с другими видами импульсной модуляции» / Известия высших учебных заведений (Поволжский регион). Пенза: ПГУ, 2006, №6 С.226-237).

В установившемся режиме Ux=const значения UB[i] развертывающей функции R2(t) в точках B(i) равны, т.е. UB[i-1]=UB[i] и T1[i-1]=T1[i] и T2[i-1]=T2[i]. Из уравнения для второй развертывающей функции R2(t)

найдем функцию преобразования:

где - интервал преобразования, , n - количество тактов преобразования фиксированной длительности, τ - постоянная времени интеграторов. Полученное значение

преобразуется в цифровой код в ВУ 11.

Переходной процесс на временных диаграммах сформирован подключением на вход устройства в случайный момент времени стандартного воздействия в виде скачка напряжения. Видно, что точки A[0], A[1], A[2], A[3], определяющие момент переключения полярности опорного напряжения, т.е. длительность информативных интервалов времени, меняют свое положение в каждом такте преобразования фиксированной длительности T0. Длительность переходного процесса составляет два такта преобразования фиксированной длительности T0. Таким образом, только в 3-м такте (т.A[3]) результат преобразования будет соответствовать входному напряжению.

Для подтверждения данного недостатка найдем значения информативного интервала ΔT[i] (i - номер текущего цикла преобразования) в 0, 1, 2 и 3-м тактах преобразования. Значения UB[i] найдем из уравнения

где t - текущее время в течение интервала фиксированной длительности T0, τ - постоянная времени интеграторов 1 и 2 (поскольку постоянные времени интеграторов 1 и 2 являются константами, следовательно, не оказывают влияния на длительность переходного процесса, для упрощения расчетов можем считать R1=R2=R3=R4=R, C1=C2=C и τ=RC). Также на временных диаграммах Фиг.1 для определенности принято UП=U0 и 2τ=Т0.

Из формулы (2) следует, что

Значения UB[2], UB[3] и UB[4] найдем аналогично из формулы (2).

Поскольку изменение Ux происходит в случайный момент времени, обозначим интервал времени от начала такта преобразования фиксированной длительности Т0 до момента изменения Ux через Δt, тогда: Δt=kT0, где 0≤k≤1.

Найдем значение UB[2]:

Начиная с 3-го такта, k=0, поэтому значения UB[3] и UB[4] будут равны UB[3]=UB[4]=2UX-U0.

Для т.A можно записать следующее равенство развертывающих функций:

R1(T1[i])=R2(T1[i]).

Или в развернутом виде: .

Отсюда выразим

Найдем значение интервала ΔT0=T1[i]-T2[i]. Учитывая, что T2[i]=T0-T1[i]), получаем

ΔT0=T1[i]-T0+T1[i]=2T1[i]-T0.

Так как T0=const, Un=const, то при T1[i]=const для Ux=const переходный процесс заканчивается, т.е. при UB[3]=UB[4] получаем T1[3]=T1[4].

Следовательно, длительность переходного процесса составляет 2 такта: скачок напряжения Ux произошел в 1-ом такте, а правильный результат преобразования получен в 3-м такте, что ограничивает быстродействие данного преобразователя (описанного в способе-прототипе).

С целью повышения быстродействия в способ интегрирующего аналого-цифрового преобразования, основанный на формировании последовательности временных тактов преобразования фиксированной длительности, в каждом из которых формируют две развертывающие функции, выделяют информативный интервал времени и преобразуют информативные интервалы времени в цифровой код, причем для формирования первой развертывающей функции с момента времени, соответствующего началу каждого такта преобразования, осуществляют интегрирование суммы входного напряжения и опорного напряжения положительной полярности и вычитание из положительного порогового напряжения текущего интегрального значения, а для формирования второй развертывающей функции осуществляют интегрирование суммы входного напряжения и опорного напряжения отрицательной полярности, и с момента времени, соответствующего равенству значений развертывающих функций, фиксируют значение первой развертывающей функции равным значению положительного порогового напряжения, а для формирования второй развертывающей функции осуществляют интегрирование суммы входного напряжения и опорного напряжения положительной полярности, длительность информативных интервалов времени определяют как разность интервалов времени интегрирования опорных напряжений положительной и отрицательной полярности соответственно, дополнительно в процессе преобразования формируют третью развертывающую функцию, для этого с момента времени, соответствующего середине каждого такта фиксированной длительности, осуществляют интегрирование суммы входного напряжения и опорного напряжения отрицательной полярности и суммирование с отрицательным пороговым напряжением текущего интегрального значения, а с момента времени, соответствующего равенству значений второй и третьей развертывающих функций, фиксируют значение третьей развертывающей функции равным значению отрицательного порогового напряжения, а вторую развертывающую функцию формируют путем интегрирования суммы входного напряжения и опорного напряжения отрицательной полярности.

Временные диаграммы, поясняющие работу предлагаемого способа, приведены на Фиг.3, где R1(t) - первая развертывающая функция, R2(t) - вторая развертывающая функция, R3(t) - третья развертывающая функция. В точках A[0] …A[n] значения первой и второй развертывающих функций равны (R1(t)=R2(t)), в точках B[0]…В[n] значения второй и третьей развертывающих функций равны (R2(t)=R3(t)). В верхней части Фиг.3 показаны моменты переключения значений опорного напряжения U0/-U0. T1[1]…T1[n] - интервалы времени от начала временного такта преобразования фиксированной длительности до момента времени равенства первой и второй развертывающей функции. Т2[1]…Т2[n] - интервалы времени от момента времени, равного середине интервала времени такта преобразования фиксированной длительности до момента времени равенства второй и третьей развертывающей функции, n - количество тактов преобразования фиксированной длительности, входящих в интервал преобразования Tn.

Устройство, реализующее предложенный способ и показанное на Фиг.4, содержит основной 1 и вспомогательные 2, 12 интеграторы, управляемый переключатель 3 опорных напряжений +U0 и -U0, компараторов 4, 14, операционных усилителей 5, 15, формирователей порогового уровня 6, 16, источника опорного напряжения 7 (ИОН), генератора 8 опорной частоты (ГОЧ), управляемых ключей 10, 13 и вычислительного устройства 11 (ВУ). Причем выход переключателя 3 соединен с входом 1 основного интегратора 1, а его входы с источником опорного напряжения 7 и УУ 9. На вход 2 основного интегратора 1 подается входной (измеряемый) сигнал. На вход 1 вспомогательных интеграторов 2 и 12 постоянно подается входное напряжение и на вход 2 вспомогательного интегратора 2 постоянно подается отрицательное опорное напряжение -U0 с ИОН 7, а на вход 2 вспомогательного интегратора 12 положительное опорное напряжение +U0 с ИОН 7. Выходы основного 1 и вспомогательного 2 интеграторов соединены соответственно с входами 1 и 2 компаратора 4, который соединен с входом 1 УУ 9. Выходы основного 1 и вспомогательного 12 интеграторов соединены соответственно с входами 1 и 2 компаратора 14, который соединен с входом 3 УУ 9. На вход 1 аналоговых сумматоров 18 и 19 подаются выходные напряжения с вспомогательных 2 и 12 интеграторов соответственно. Выходное напряжение с аналогового сумматора 18 подается на операционный усилитель 5, а с аналогового сумматора 19 подается на операционный усилитель 15. Операционные усилители 5 и 15 подключены к входам 2 компараторов 4, 14. На вход 2 УУ 9 и на вход 1 ВУ 11 подаются импульсы опорной частоты с ГОЧ 8. Вход 2 УУ 9 управляет работой переключателя 3, ключей 10, 13 и ВУ 11.

Работа устройства осуществляется следующим образом. Как и в устройстве, реализующем способ-прототип, генератором 8 опорной частоты формируется последовательность временных тактов преобразования фиксированной длительности Т0. Первая развертывающая функция R1(t) формируется интегратором 2, вторая развертывающая функция R2(t) формируется интегратором 1, третья развертывающая функция R3(t) формируется интегратором 12. На интервале времени от начала такта фиксированной длительности до момента равенства значений первой и второй развертывающих функций R1(t)=R2(t) т.A) значения R1(t) формируются путем вычитания из положительного порогового напряжения UП текущего интегрального значения суммы входного Ux и опорного U0 напряжений; значения R2(t) формируются как интегральные значения разности входного и опорного напряжений.

Дополнительно, третья развертывающая функция R3(t) формируется интегратором 12 со значения, соответствующего -UП, и с момента времени, сдвинутого относительно начала формирования первой развертывающей функции на интервал времени длительностью , как показано на Фиг.3. Момент равенства значений третьей и второй развертывающих функций фиксируется компаратором 14. На Фиг.3 эти моменты обозначены т.B [i], где i - номер такта фиксированной длительности. Значения напряжений, участвующих в формировании всех развертывающих функций, приведены на диаграмме.

Результат преобразования определяется вычислительным устройством 11 путем вычисления и преобразования в цифровой вид значения

Условия установившегося режима: как в способе-прототипе значения напряжения UA[i] в точках A[i] равны (т.е. UA[i]=UA[i+1]=UA[n]) и дополнительно в точках B[i] UB[i]=UB[i+1]=UB[n], следовательно, в установившемся режиме интервал времени между точками A[i] и A[i+1] равен Т0; интервал между точками B[i] и B[i+1] также равен Т0 и T1[i]=T1[i+1]=T1[n], T2[i]=T2[i+1]=Т2[n]. Из уравнения формирования второй развертывающей функции R2(t) за интервал Т0

Ux+(T+[i]+T-[i])+U0(T+[i]-T-[i])=0

можно найти выражение для результата преобразования

или и для интервала преобразования TП, где TП=nT0.

Аналогично, как в способе прототипе, рассмотрим скачкообразное изменение Ux в случайный момент времени. Обозначим интервал времени от начала такта преобразования фиксированной длительности Т0 до момента изменения Ux через Δt, тогда: Δt=kT0, где 0≤k≤1. Также будем считать, что UП=U0 и 2τ=Т0.

Тогда значение напряжения в т.A [1] будет определяться выражением:

UA[1]=UП-2(U0+Ux(1-k)).

Из диаграммы Фиг.3 видно, что со второго такта k=0, и значения UA[2]=UA[3], a UB[2]=UB[3].

Поэтому, начиная с интервала времени T1[2], процесс преобразования можно считать установившимся, следовательно, результат преобразования, начиная с этого интервала времени, должен определяться в соответствии с выражениями (1) - для способа-прототипа и (3) - для предлагаемого способа.

Таким образом, если скачок входного напряжения произошел между началом интервала T1[1] формирования R1(t) и началом интервала Т2[1] формирования R3(t), переходный процесс заканчивается до начала интервала T1[2], т.е. его длительность лежит в пределах от до Т0 (как показано на Фиг.3), аналогично, если скачок входного напряжения произошел между началом интервала T2[1] формирования R3(t) и началом интервала T1[2] формирования R1(t), то переходный процесс закончится до начала интервала Т2[2] и также не превышает значения T0.

Поскольку в способе-прототипе длительность переходного процесса составляет 2 такта фиксированной длительности T0, то при прочих равных условиях быстродействие предлагаемого способа как минимум в 2 раза выше.

Для подтверждения этого напишем уравнение для приращений второй развертывающей функции R2(t) на следующих интервалах времени:

1) от начала T1[0] до начала T1[1]:

Упростив, получаем:

U0(T+[0]+T-[0]-T1[0]-T1[1])=0, как и следовало ожидать, поскольку Ux=0.

2) от начала T1[1] до начала T1[2] (присутствует скачок входного напряжения):

Упростив, получаем:

видно, что данное выражение отличается от выражения (3) для установившегося режима наличием kT0.

3) от начала T1[2] до начала T1[3]

Упростив, получаем:

Учитывая, что в установившемся режиме T1[2]=T1[3]=T1[i], получаем выражение: , может быть переписано в общем виде:

,что совпадает с выражением (3) для установившегося режима.

Таким образом, от момента изменения Ux до начала установившегося режима проходит интервал времени длительностью, не превышающей значения T0, что и требовалось доказать.

Источники информации

1. Патент ФРГ №2214602, кл. G01R 19/26, 04.09.75.

2. Орнатский П.П. Автоматические измерения и приборы. Киев: Вища школа, 1973, с.435-437.

3. Шахов Э.К., Ашанин В.Н., Надев А.И. Реализация концепций ΔΣ-АЦП в интегрирующих АЦП с другими видами импульсной модуляции./Известия высших учебных заведений (Поволжский регион). Пенза: ПГУ, 2006, №6 С.226-237.

Похожие патенты RU2457617C1

название год авторы номер документа
СПОСОБ ИНТЕГРИРУЮЩЕГО АНАЛОГО-ЦИФРОВОГО ПРЕОБРАЗОВАНИЯ НАПРЯЖЕНИЯ 2013
  • Куц Александр Валентинович
  • Пискаев Кирилл Юрьевич
  • Юрманов Валерий Анатольевич
RU2550591C1
СПОСОБ ИНТЕГРИРУЮЩЕГО ПРЕОБРАЗОВАНИЯ СИГНАЛОВ НИЗКОГО УРОВНЯ В РАЗНОСТЬ ИНТЕРВАЛОВ ВРЕМЕНИ 2008
  • Михеев Михаил Юрьевич
  • Юрманов Валерий Анатольевич
  • Куц Александр Валентинович
  • Володин Константин Игоревич
  • Гудков Кирилл Владимирович
RU2396570C2
СПОСОБ ИНТЕГРИРУЮЩЕГО АНАЛОГО-ЦИФРОВОГО ПРЕОБРАЗОВАНИЯ 2006
  • Шахов Эдуард Константинович
  • Ашанин Василий Николаевич
RU2303327C1
Аналого-цифровой преобразователь 1990
  • Лукьянов Лев Михайлович
SU1728968A1
СПОСОБ ИНТЕГРИРУЮЩЕГО АНАЛОГО-ЦИФРОВОГО ПРЕОБРАЗОВАНИЯ НАПРЯЖЕНИЯ 2005
  • Шахов Эдуард Константинович
  • Ашанин Василий Николаевич
RU2291559C1
СПОСОБ ИНТЕГРИРУЮЩЕГО АНАЛОГО-ЦИФРОВОГО ПРЕОБРАЗОВАНИЯ НАПРЯЖЕНИЯ 2005
  • Шахов Эдуард Константинович
  • Ашанин Василий Николаевич
  • Надеев Андрей Игоревич
RU2294595C1
СПОСОБ ИНТЕГРИРУЮЩЕГО АНАЛОГО-ЦИФРОВОГО ПРЕОБРАЗОВАНИЯ НАПРЯЖЕНИЯ 2005
  • Шахов Эдуард Константинович
  • Ашанин Василий Николаевич
  • Чувыкин Борис Викторович
RU2292642C1
Время-импульсный универсальный интегрирующий преобразователь напряжения с функцией широтно-импульсной модуляции 2020
  • Сафинов Шамиль Саидович
RU2731601C1
Интегрирующий аналого-цифровой преобразователь 1987
  • Евланов Юрий Николаевич
  • Шатохин Александр Алексеевич
SU1483639A1
ВРЕМЯ-ИМПУЛЬСНЫЙ УНИВЕРСАЛЬНЫЙ ИНТЕГРИРУЮЩИЙ ПРЕОБРАЗОВАТЕЛЬ НАПРЯЖЕНИЯ 2018
  • Кук Илья Андреевич
  • Сафинов Шамиль Саидович
RU2689805C1

Иллюстрации к изобретению RU 2 457 617 C1

Реферат патента 2012 года СПОСОБ ИНТЕГРИРУЮЩЕГО АНАЛОГО-ЦИФРОВОГО ПРЕОБРАЗОВАНИЯ НАПРЯЖЕНИЯ

Изобретение относится к области электроизмерительной техники, в частности к интегрирующему преобразованию постоянного напряжения. Техническим результатом является повышение быстродействия. Способ основан на формировании последовательности временных тактов преобразования фиксированной длительности, в каждом из которых формируют три развертывающие функции, выделяют информативный интервал времени и преобразуют информативные интервалы времени в цифровой код, причем для формирования первой развертывающей функции с момента времени, соответствующего началу каждого такта преобразования, осуществляют интегрирование суммы входного напряжения и опорного напряжения положительной полярности и вычитание из положительного порогового напряжения текущего интегрального значения, для формирования второй развертывающей функции осуществляют интегрирование суммы входного напряжения и опорного напряжения отрицательной полярности и с момента времени, соответствующего равенству значений развертывающих функций, фиксируют значение первой развертывающей функции равным значению положительного порогового напряжения, а для формирования второй развертывающей функции осуществляют интегрирование суммы входного напряжения и опорного напряжения положительной полярности, с момента времени, соответствующего середине каждого такта фиксированной длительности, формируют третью развертывающую функцию путем интегрирования суммы входного напряжения и опорного напряжения отрицательной полярности и суммирования с отрицательным пороговым напряжением текущего интегрального значения, а с момента времени, соответствующего равенству значений второй и третьей развертывающих функций, фиксируют значение третьей развертывающей функции равным значению отрицательного порогового напряжения, длительность информативных интервалов времени определяют как разность интервалов времени интегрирования опорных напряжений положительной и отрицательной полярности соответственно. 4 ил.

Формула изобретения RU 2 457 617 C1

Способ интегрирующего аналого-цифрового преобразования основан на формировании последовательности временных тактов преобразования фиксированной длительности, в каждом из которых формируют две развертывающие функции, выделяют информативный интервал времени и преобразуют информативные интервалы времени в цифровой код, причем для формирования первой развертывающей функции с момента времени, соответствующего началу каждого такта преобразования, осуществляют интегрирование суммы входного напряжения и опорного напряжения положительной полярности и вычитание из положительного порогового напряжения текущего интегрального значения, а для формирования второй развертывающей функции осуществляют интегрирование суммы входного напряжения и опорного напряжения отрицательной полярности и с момента времени, соответствующего равенству значений развертывающих функций, фиксируют значение первой развертывающей функции равным значению положительного порогового напряжения, а для формирования второй развертывающей функции осуществляют интегрирование суммы входного напряжения и опорного напряжения положительной полярности, длительность информативных интервалов времени определяют как разность интервалов времени интегрирования опорных напряжений положительной и отрицательной полярности соответственно, отличающийся тем, что, с целью повышения быстродействия, формируют третью развертывающую функцию, для этого с момента времени соответствующего середине каждого такта фиксированной длительности осуществляют интегрирование суммы входного напряжения и опорного напряжения отрицательной полярности и суммирование с отрицательным пороговым напряжением текущего интегрального значения, с момента времени, соответствующего равенству значений второй и третьей развертывающих функций, фиксируют значение третьей развертывающей функции равным значению отрицательного порогового напряжения, а вторую развертывающую функцию формируют путем интегрирования суммы входного напряжения и опорного напряжения отрицательной полярности.

Документы, цитированные в отчете о поиске Патент 2012 года RU2457617C1

СПОСОБ ИНТЕГРИРУЮЩЕГО АНАЛОГО-ЦИФРОВОГО ПРЕОБРАЗОВАНИЯ НАПРЯЖЕНИЯ 2005
  • Шахов Эдуард Константинович
  • Ашанин Василий Николаевич
  • Чувыкин Борис Викторович
RU2292642C1
СПОСОБ ИНТЕГРИРУЮЩЕГО АНАЛОГО-ЦИФРОВОГО ПРЕОБРАЗОВАНИЯ НАПРЯЖЕНИЯ 2005
  • Шахов Эдуард Константинович
  • Ашанин Василий Николаевич
  • Надеев Андрей Игоревич
RU2294595C1
Способ интегрирующего аналого-цифрового преобразования 1987
  • Шахов Эдуард Константинович
  • Щигирев Евгений Анатольевич
  • Сипягин Николай Анатольевич
  • Михотин Владимир Дмитриевич
  • Королев Дмитрий Львович
SU1438002A1
JP 58164318 А, 29.09.1983
JP 61224729 А, 06.10.1986.

RU 2 457 617 C1

Авторы

Куц Александр Валентинович

Михеев Михаил Юрьевич

Пискаев Кирилл Юрьевич

Юрманов Валерий Анатольевич

Даты

2012-07-27Публикация

2011-08-03Подача