СПОСОБ ПРОИЗВОДСТВА ГОРЯЧЕКАТАНОЙ КАНАТНОЙ КАТАНКИ Российский патент 2012 года по МПК B21B1/16 

Описание патента на изобретение RU2457911C1

Изобретение относится к прокатному производству и может быть использовано при изготовлении горячекатаного мелкосортного проката, преимущественно канатной катанки.

Технология производства мелкосортного проката, в частности канатной катанки (длинномерный прокат с круглой формой поперечного сечения, используемый в качестве исходного материала для производства канатной проволоки), достаточно подробно описана, например, в книге П.И.Полухин и др. «Прокатное производство», М.: Металлургия, 1982, с.316-328.

Известен способ производства высокопрочной стальной катанки, при котором она охлаждается до температуры окружающей среды, затем выдерживается в печи с жидким расплавом при температурах 300°…600°С и далее снова нагревается до 450°…600°С, что обеспечивает высокую прочность катанки при удовлетворительной ее пластичности (см. японская заявка №6462424, кл. C27D 9/52, опубл. 08.03.89 г.). Однако этот способ малопригоден для производства канатной катанки.

Наиболее близким аналогом к заявляемому объекту является технология производства катанки на непрерывном стане «250» ЗСМК, описанная в справочнике под ред. В.И.Зюзина и А.В.Третьякова «Технология прокатного производства», кн.1, М.: Металлургия, 1991, с.388-395.

Эта технология включает горячую прокатку металла, его охлаждение и смотку в бунты и характеризуется нагревом металла перед прокаткой в двухзонных рекуперативных печах, имеющих испарительное и водяное охлаждение; прокатку ведут в 37 двухвалковых клетях с применением двухстадийного ускоренного и регулируемого охлаждения металла и последующей смоткой его в бунты. Недостатком известной технологии является неопределенность температур металла на определенных стадиях процесса (например, перед черновой группой клетей, после участка водяного охлаждения и при смотке), что затрудняет получение катанки с заданными механическими характеристиками, в частности, для производства канатов.

Технической задачей настоящего изобретения является получение горячекатаного мелкосортного проката, в частности канатной катанки, с заданными механическими свойствами, что повышает выход проката требуемых свойств и сокращает производственные затраты в последующем метизном переделе (дополнительная термообработка, травление и подготовка поверхности используемой заготовки).

Для решения этой задачи предлагаемый способ производства горячекатаной канатной катанки включает горячую прокатку металла, его охлаждение и смотку в бунты с заданными температурами на отдельных операциях производства при прокатке стали, содержащей 0,58…0,89 мас.% углерода, 0,45…0,66% марганца, 0,1…0,25% кремния и другие элементы, с углеродным эквивалентом Сэ=0,67…0,93, температуру перед черновой группой клетей принимают из соотношения: tчер=(958,0…957,93)-3,91δ+0,06σв, температуру после участка водяного охлаждения tохл=(706,48…706,40)+96,9Сэ+2,57δ, а температуру смотки - tсм=(236,16…236,15)+2,17δ+46,09Сэ, где Сэ=0,83[С]+0,36[Si]+0,18[Mn]+0,31[S]+0,32[P]+0,38[Al]+0,19[Cr]+0,17[Ni]+0,16[Сu] и [С], [Si], [Mn], [Cr], [Ni], [S], [P], [Al], [Сu] - содержание в стали соответственно: углерода, кремния, марганца, хрома, никеля, серы, фосфора, алюминия и меди, мас.%; σв - временное сопротивление деформации и δ - ее относительное удлинение.

Приведенные температурные параметры прокатки получены опытным путем и являются эмпирическими.

Сущность заявляемого технического решения заключается в оптимизации температур отдельных операций производства, что обеспечивает требуемые механические характеристики канатной катанки.

Опытную проверку предлагаемого способа производили на мелкосортно -проволочном стане «170» ОАО «Магнитогорский металлургический комбинат». С этой целью при горячей прокатке стали, содержащей 0,58…0,89 мас.% углерода, 0,45…0,66% марганца, 0,1…0,25% кремния и другие элементы, с углеродным эквивалентом Сэ=0,67…0,93, на отдельных этапах производства варьировали температуры перед черновой группой клетей tчер, после участка водяного охлаждения tохл и смотки tсм, оценивая результаты по выходу проката по ТУ 14-1-5317-95.

Наилучшие результаты (максимальный выход проката требуемых свойств в пределах 97,9…99,2%) получен с применением используемой технологии. Отклонения от рекомендуемых величин tчep, tохл и tсм ухудшали достигнутые показатели.

Так, например, при снижении значений tчер, tохл и tсм выход годного проката не превысил 96,0%, в основном - из-за несоответствия проката пластическим свойствам по ТУ 14-1-5317-95. Увеличение значений tчер, tохл и tсм более рекомендуемых величин не дало выхода требуемого качества проката более 97,1%, в основном - из-за несоответствия части продукции прочностным свойствам по ТУ 14-1-5317-95.

Горячая прокатка канатной катанки по технологии, выбранной в качестве ближайшего аналога (см. выше), дала выход требуемой продукции в пределах 84…88%. Таким образом, опытная проверка подтвердила приемлемость найденного технического решения для достижения поставленной цели и его преимущество перед известной технологией.

Технико-экономические исследования показали, что использование настоящего изобретения при производстве горячекатаной канатной катанки сократит потери производства (за счет увеличения выхода годного проката требуемого качества) не менее чем на 12% при сохранении общего объема готового проката.

Пример конкретного выполнения

Качественная конструкционная сталь, содержащая 0,71 вес.% углерода, 0,63% марганца, 0,21% кремния, 0,02% хрома, 0,03% никеля, 0,013% серы, 0,014% фосфора, 0,04% меди и 0,003% алюминия, предназначенная для производства канатной катанки, с углеродным эквивалентом Сэ=0,83[С]+0,36[Si]+0,18[Mn]+0,31[S]+0,32[P]+0,38[Al]+0,19[Cr]+0,17[Ni]+0,16[Сu]=0,83·0,71+0,36·0,21+0,18·0,63+0,31·0,013+0,32·0,014+0,38·0,003+0,19·0,02+0,17·0,03+0,16·0,04=0,80 и заданными: временным сопротивлением деформации σв=960 Н/мм2 и относительным удлинением δ=12%.

Температурный режим прокатки:

tчер=(958,0…957,93)-3,91δ+0,06σв=(958,0…957,93)-3,91·12+0,06·960=968,68…968,61°С.

tохл=(706,48…706,40)+96,9Сэ+2,57δ=(706,48…706,40)+96,9·0,8+2,57·12=814,84…814,76°C.

tсм=(236,16…236,15)+2,17δ+46,09Сэ=(236,16…236,15)+2,17·12+46,09·0,8=299,07…299,06°C.

Допускаемые отклонения фактических величин температур от расчетных ±5 град.

Выход годного проката - 98,9%.

Похожие патенты RU2457911C1

название год авторы номер документа
СПОСОБ ПРОИЗВОДСТВА ГОРЯЧЕКАТАНОЙ ТОНКОЛИСТОВОЙ СТАЛИ 2008
  • Румянцев Михаил Игоревич
  • Шубин Игорь Геннадьевич
  • Завалищин Александр Николаевич
  • Цепкин Алексей Сергеевич
  • Корнилов Владимир Леонидович
  • Антипанов Вадим Григорьевич
RU2365636C1
СПОСОБ ПРОИЗВОДСТВА ГОРЯЧЕКАТАНОГО ПРОКАТА ИЗ КОНСТРУКЦИОННОЙ СТАЛИ 2018
  • Огольцов Алексей Андреевич
  • Новоселов Сергей Иванович
  • Кухтин Сергей Анатольевич
  • Филатов Николай Владимирович
RU2676543C1
СПОСОБ ПРОИЗВОДСТВА ГОРЯЧЕКАТАНОГО ЛИСТА ДЛЯ ОЦИНКОВАНИЯ 2008
  • Румянцев Михаил Игоревич
  • Исмагилов Рустам Амирович
  • Завалищин Александр Николаевич
  • Шубин Игорь Геннадьевич
  • Корнилов Владимир Леонидович
  • Антипанов Вадим Григорьевич
RU2366731C1
СПОСОБ ПРОИЗВОДСТВА ГОРЯЧЕКАТАНОЙ ШИРОКОПОЛОСНОЙ СТАЛИ 2011
  • Шубин Игорь Геннадьевич
  • Румянцев Михаил Игоревич
  • Хаирова Алина Фаритовна
  • Ветренко Александр Геннадьевич
  • Горбунов Андрей Викторович
  • Молостов Михаил Александрович
  • Галкин Виталий Владимирович
  • Казаков Игорь Владимирович
  • Казаков Олег Владимирович
  • Кузнецов Алексей Владимирович
RU2476278C2
СПОСОБ ПРОИЗВОДСТВА ШТРИПСОВ ИЗ НИЗКОЛЕГИРОВАННОЙ СТАЛИ 2012
  • Казаков Игорь Владимирович
  • Молостов Михаил Александрович
  • Денисов Сергей Владимирович
  • Васильев Иван Сергеевич
  • Настич Сергей Юрьевич
  • Морозов Юрий Дмитриевич
  • Зинько Бронислав Филиппович
RU2519720C2
СПОСОБ ПРОИЗВОДСТВА ГОРЯЧЕКАТАНОГО ПОЛОСОВОГО ПРОКАТА ДЛЯ ТРУБНОГО ШТРИПСА 2002
  • Урцев В.Н.
  • Хабибулин Д.М.
  • Штоль В.Ю.
  • Аникеев С.Н.
RU2203964C1
СПОСОБ ПРОИЗВОДСТВА ШТРИПСОВ 2007
  • Немтинов Александр Анатольевич
  • Торопов Сергей Сергеевич
  • Попов Евгений Сергеевич
  • Голованов Александр Васильевич
  • Мальцев Андрей Борисович
  • Филатов Николай Владимирович
  • Рослякова Наталья Евгеньевна
  • Тетюева Тамара Викторовна
  • Ефимов Семен Викторович
  • Лятин Андрей Борисович
  • Трайно Александр Иванович
RU2348703C2
СПОСОБ ИЗГОТОВЛЕНИЯ ИЗ ЛЕГИРОВАННОЙ СТАЛИ ВЫСОКОПРОЧНЫХ КРЕПЕЖНЫХ ИЗДЕЛИЙ 2022
  • Дубовский Сергей Васильевич
  • Канаев Денис Петрович
  • Столяров Алексей Юрьевич
  • Соколов Александр Алексеевич
  • Зайцева Мария Владимировна
  • Куранов Константин Юрьевич
  • Степанов Алексей Борисович
  • Колдаев Антон Викторович
  • Сорокин Алексей Александрович
  • Зайцев Александр Иванович
RU2805689C1
Способ производства горячекатаного хладостойкого рулонного проката, устойчивого к атмосферной коррозии 2023
  • Полецков Павел Петрович
  • Кузнецова Алла Сергеевна
  • Алексеев Даниил Юрьевич
  • Емалеева Динара Гумаровна
  • Гулин Александр Евгеньевич
  • Картунов Андрей Дмитриевич
  • Денисов Сергей Владимирович
  • Казаков Александр Сергеевич
  • Брайчев Евгений Викторович
  • Стеканов Павел Александрович
RU2820583C1
СПОСОБ ПРОИЗВОДСТВА КАТАНКИ ДЛЯ ХОЛОДНОДЕФОРМИРОВАННОЙ АРМАТУРЫ 2007
  • Сеничев Геннадий Сергеевич
  • Шмаков Владимир Иванович
  • Дьяченко Виктор Федорович
  • Бодяев Юрий Алексеевич
  • Карпов Евгений Вениаминович
  • Николаев Олег Анатольевич
RU2333261C1

Реферат патента 2012 года СПОСОБ ПРОИЗВОДСТВА ГОРЯЧЕКАТАНОЙ КАНАТНОЙ КАТАНКИ

Изобретение предназначено для повышения потребительских свойств горячекатаного мелкосортного проката, в частности канатной катанки. Способ включает горячую прокатку металла, его охлаждение и смотку в бунты с заданными температурами на отдельных операциях производства. Получение оптимальных соотношений между прочностными и пластическими свойствами катанки обеспечивается за счет того, что прокатывают сталь, содержащую 0,58…0,89 мас.% углерода, 0,45…0,66% марганца, 0,1…0,25% кремния и другие элементы, с углеродным эквивалентом Сэ=0,67…0,93, температуру перед черновой группой клетей принимают из соотношения: tчер=(958,0…957,93)-3,91δ+0,06σв, температуру после участка водяного охлаждения toxл=(706,48…706,40)+96,9Cэ+2,57δ, а температуру смотки - tсм=(236,16…236,15)+2,17δ+46,09Сэ, Сэ=0,83[С]+0,36[Si]+0,18[Mn]+0,31[S]+0,32[P]+0,38[A1]+0,19[Cr]+0,17[Ni]+0,16[Сu], где [С], [Si], [Mn], [Cr], [Ni], [S], [P], [Al], [Сu] - содержание в стали соответственно: углерода, кремния, марганца, хрома, никеля, серы, фосфора, алюминия и меди, мас.%; σв - временное сопротивление деформации и δ - относительное удлинение. 1 пр.

Формула изобретения RU 2 457 911 C1

Способ производства горячекатаной канатной катанки из стали, содержащей 0,58…0,89 мас.% углерода, 0,45…0,66% марганца, 0,1…0,25% кремния, с углеродным эквивалентом Сэ=0,67…0,93, включающий горячую прокатку металла, водяное охлаждение и смотку в бунты с заданными температурами на отдельных операциях производства, причем при горячей прокатке температуру стали перед черновой группой клетей устанавливают из соотношения: tчep=(958,0…957,93)-3,91δ+0,06σв, температуру после участка водяного охлаждения toxл=(706,48…706,40)+96,9Cэ+2,57δ, а температуру смотки t=(236,16…236,15)+2,17δ+46,09Cэ, при этом Cэ=0,83[C]+0,36[Si]+0,18[Mn]+0,31[S]+0,32[P]+0,38[Al]+0,19[Cr]+0,17[Ni]+0,16[Сu], где [С], [Si], [Mn], [Cr], [Ni], [S], [P], [Al], [Cu] - содержание элементов в стали, мас.%; σв - временное сопротивление деформации, н/мм2; а δ - относительное удлинение, %.

Документы, цитированные в отчете о поиске Патент 2012 года RU2457911C1

RU 92006237 А, 20.09.1995
СПОСОБ ПРОИЗВОДСТВА ГОРЯЧЕКАТАНЫХ ПОЛОС ИЗ МИКРОЛЕГИРОВАННОЙ СТАЛИ 2004
  • Денисов Сергей Владимирович
  • Сарычев Александр Федорович
  • Кузнецов Владимир Георгиевич
  • Казаков Олег Владимирович
  • Злов Владимир Евгеньевич
RU2279935C1
Способ производства проката 1987
  • Минаев Александр Анатольевич
  • Бердичевский Юрий Евгеньевич
  • Сайгаков Анатолий Авраамович
  • Кацнельсон Генрих Майорович
  • Сердюк Геннадий Анатольевич
  • Холодило Валерий Андреевич
  • Стурза Василий Иванович
SU1574653A1
Способ горячей прокатки полос 1990
  • Атряскин Валерий Федорович
  • Сосковец Олег Николаевич
  • Свичинский Александр Григорьевич
  • Бурлаков Сергей Александрович
  • Титов Вячеслав Александрович
  • Овчинников Вячеслав Иванович
  • Трайно Александр Иванович
  • Щербашин Юрий Дмитриевич
  • Лукоянов Борис Егорович
  • Бащенко Анатолий Павлович
SU1708452A1
СПОСОБ ПРОИЗВОДСТВА ТЕРМОУПРОЧНЕННОЙ АРМАТУРЫ 2008
  • Дубровский Борис Александрович
  • Куницын Глеб Александрович
  • Великий Андрей Борисович
  • Селезнев Игорь Васильевич
  • Ивин Юрий Александрович
  • Симаков Юрий Владимирович
  • Павлов Владимир Викторович
RU2360978C1
US 5213637 A, 25.05.1993
JP 2005226147 A, 25.08.2005.

RU 2 457 911 C1

Авторы

Шубин Игорь Геннадьевич

Румянцев Михаил Игоревич

Корнилов Владимир Леонидович

Шубина Наталья Игоревна

Попов Антон Олегович

Азаров Александр Петрович

Степанова Екатерина Николаевна

Некрасов Сергей Владимирович

Даты

2012-08-10Публикация

2011-02-10Подача