СПОСОБ УЛЬТРАЗВУКОВОЙ ТОМОГРАФИИ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ Российский патент 2012 года по МПК G01N29/06 

Описание патента на изобретение RU2458342C1

Изобретение относится к измерительной технике и может быть использовано при ультразвуковой диагностике плоских металлоконструкций определенной толщины.

Прототипом изобретения является способ ультразвуковой (УЗ) томографии, включающий в себя излучение в объект контроля (ОК) и прием из него УЗ сигналов с помощью антенной решетки (АР), фиксацию реализаций УЗ колебаний, принятых каждым элементом АР при излучении УЗ сигнала независимо каждым ее элементом, и поточечное построение изображения внутренней структуры ОК путем выбора изо всех принятых реализаций тех фрагментов, времена задержки которых равны временам распространения УЗ сигналов от излучающего элемента АР к каждой визуализируемой точке ОК и от нее к приемному элементу, суммирования этих выбранных фрагментов для каждой точки изображения и записи результата суммирования - статья В.А.Воронкова, И.В.Воронкова, В.Н.Козлова, А.А.Самокрутова, В.Г.Шевалдыкина «О применимости технологии антенных решеток в решении задач ультразвукового контроля опасных производственных объектов» в журнале «В мире неразрушающего контроля», 2011, №1 (51), с.64-70.

Прототипом изобретения-устройства является устройство УЗ томографии, реализующее указанный способ и содержащее АР с n приемно-передающими элементами, каждый из которых соединен с выходом соответствующего генератора импульсов и входом соответствующей цепочки последовательно соединенных усилителя и аналого-цифрового преобразователя, выход каждой из n указанных цепочек соединен с соответствующим входом памяти реализаций, количество выходов которой N определяется формулой:

N=n·(n+1)/2,

выходы памяти реализаций соединены с соответствующими входами вычислительного блока, связанного с дисплеем через память изображения, при этом входы синхронизации каждого генератора импульсов, памяти реализаций, вычислительного блока и памяти изображения соединены с соответствующими выходами синхронизатора - источник указан выше.

Недостатки прототипа - способа и устройства состоят в следующем:

- алгоритм реконструкции изображения основан на фокусировке апертуры АР в каждую точку визуализируемого сечения ОК в предположении того, что каждая точка материала рассеивает ультразвук во все стороны одинаково, т.е. алгоритм настроен на обнаружение малых в сравнении с длиной волны отражателей. Поэтому зеркально отражающие ультразвук несплошности материала, например, трещины с гладкими поверхностями, особенно ориентированные вертикально (перпендикулярно внешней поверхности) или под небольшими углами наклона относительно нормали к поверхности, могут быть пропущены. Внутренние вертикальные трещины отображаются на дисплее только как две точки, которые формируются эхосигналами от краев трещины, а сама поверхность трещины не видна;

- при контроле объектов с определенной толщиной, в частности, плит или пластин (а это - наиболее часто встречающиеся ОК), на изображении присутствуют несколько образов от одного и того же отражателя: один, самый верхний - реальный, остальные на кратных глубинах - мнимые, вызванные отражениями ультразвука от донной и внешней поверхностей ОК как от зеркал. Это усложняет изображение и делает его трудно интерпретируемым.

В связи с этим технической задачей, решаемой изобретениями - способом и устройством ультразвуковой томографии, является повышение чувствительности к малым отражателям, повышение разрешающей способности и получение вида изображения, адекватного реальному сечению ОК.

Задача решена в способе ультразвуковой томографии, включающем в себя излучение в объект контроля и прием из него УЗ сигналов с помощью антенной решетки, фиксацию реализаций УЗ колебаний, принятых каждым элементом решетки при излучении УЗ сигнала независимо каждым ее элементом, и поточечное построение изображения внутренней структуры объекта путем выбора изо всех принятых реализаций тех фрагментов, времена задержки которых равны временам распространения ультразвуковых сигналов от излучающего элемента решетки к каждой визуализируемой точке объекта и от нее к приемному элементу, суммирования этих выбранных фрагментов для каждой точки изображения и записи результата суммирования, при этом при известной толщине объекта контроля в результирующую сумму выбранных фрагментов реализаций для каждой точки изображения дополнительно включают выборки фрагментов, времена задержек которых равны временам распространения ультразвуковых сигналов, переотраженных от донной и внешней поверхностей объекта контроля на траекториях от излучающего элемента решетки к данной визуализируемой точке объекта и от нее к приемному элементу.

Указанная задача решена устройством ультразвуковой томографии, содержащим антенную решетку с n приемно-передающими элементами, каждый из которых соединен с выходом соответствующего генератора импульсов и входом соответствующей цепочки последовательно соединенных усилителя и аналого-цифрового преобразователя, выход каждой из n указанных цепочек соединен с соответствующим входом памяти реализаций, количество выходов которой TV определяется формулой:

N=n·(n+1)/2,

выходы памяти реализаций соединены с соответствующими входами вычислительного блока, связанного с дисплеем через память изображения, при этом входы синхронизации каждого генератора импульсов, памяти реализаций, вычислительного блока и памяти изображения соединены с соответствующими выходами синхронизатора, при этом дополнительно введен соединенный с вычислительным блоком блок накопительной памяти, суммирующий для каждой точки изображения все фрагменты реализаций, времена задержки которых соответствуют временам распространения ультразвуковых сигналов как без отражений, так и с переотражениями их от границ объекта контроля.

Одним из частных представлений вычислительного блока устройства является реализация им функции:

, ,

где uA(t) - суммарный эхосигнал, принятый антенной решеткой из точки A(x, z) объекта контроля с координатами x, z;

i, j - номера излучающих и приемных элементов антенной решетки соответственно;

I, R - общее количество отражений ультразвукового сигнала от обеих границ объекта контроля на прямом пути от антенной решетки к точке A(x, z) и на обратном пути от точки A(x, z) к антенной решетке соответственно;

M - максимальное количество отражений ультразвукового сигнала от обеих границ объекта контроля отдельно на прямом и обратном путях распространения сигнала, используемое при реконструкции изображения;

ui,j - фрагмент реализации, полученной от элементов i, j антенной решетки;

t - текущее время;

tAi,j(I, R) - время задержки фрагмента ui,j реализации, содержащего сигнал, прошедший по траектории с общим количеством (I+R) отражений от обеих границ объекта контроля;

τu - длительность зондирующего импульса,

с последующим детектированием полученного результата для ввода сигнала в память изображения.

На фиг.1 приведены диаграммы, поясняющие сущность способа; на фиг.2 - схема распространения УЗ сигналов в плоскопараллельном слое материала; на фиг.3 - устройство для осуществления способа.

На фиг.1 показана антенная решетка, содержащая n элементов 1-5-n, в качестве которых обычно используются пьезоэлементы. Элементы 1-5-n АР расположены с некоторым шагом на поверхности твердого материала ОК. Все элементы 1-5-n решетки одинаковые, имеют широкую диаграмму направленности и могут работать как в качестве излучателей, так и приемников УЗ сигналов.

Для наиболее полного озвучивания визуализируемой области ОК для зондирования и приема УЗ колебаний используют все n элементов АР. В результате получают N реализаций УЗ колебаний от каждой пары элементов АР (излучатель - приемник), включая и случаи совмещенной работы элементов в качестве излучателя и приемника УЗ колебаний:

При излучении зондирующего импульса каким-либо элементом (в частности, элементом 2 на фиг.1) энергия этого импульса распространяется широким фронтом внутрь материала. Пространственная длина зондирующего импульса в направлении его распространения равна произведению длительности τu импульса на скорость с распространения УЗ волн в данном материале.

При наличии в материале ОК в точке A(x, z) с координатами x, z какого-либо отражателя (несплошности материала) часть энергии зондирующего импульса отражается обратно в сторону АР. Начало системы координат связано с АР, например, совпадает с фазовым центром первого элемента 1 (см. фиг.1). Отраженные в сторону АР сигналы распространяются по разным направлениям. К приемным элементам 1-5-n решетки отраженные сигналы приходят неодновременно, т.к. траектории их распространения имеют разную длину.

На фиг.1 внизу показаны осциллограммы реализаций УЗ колебаний, принятых отдельными элементами АР (в частности, для примера, 3-м, 5-м и 4-м при излучении зондирующих импульсов 2-м, снова 2-м и 3-м элементами решетки соответственно). Эти колебания, помимо различных шумов, содержат эхоимпульсы от отражателя в точке A(x, z). Эхоимпульсы (они на фиг.1 превышают по амплитуде шумы) расположены на оси времени с разными задержками tAi,j, где i и j - номера излучающих и приемных элементов решетки вследствие разных длин траекторий распространения УЗ сигналов в ОК. Времена tAi,j задержки прихода эхоимпульсов от отражателя в точке A(x, z) на приемные элементы АР относительно моментов посылки в ОК зондирующих импульсов зависят от координат расположения элементов АР и точки A(x, z):

где xi, xj - координаты излучающего и приемного элементов АР соответственно;

с - скорость распространения УЗ волн в материале ОК.

На фиг.2 приведена схема возможных путей распространения зондирующего импульса в плоскопараллельном слое твердого материала толщиной d от любого элемента АР к любому отражателю, расположенному, например, в точке A(x, z). Из схемы видно, что УЗ сигналы распространяются не только по кратчайшим путям (на схеме это путь 0), но и по более длинным, претерпевая отражения от донной и внешней поверхностей слоя.

На пути к любой точке в ОК, в частности, к точке A(x, z), от каждого элемента АР таких отражений может быть несколько. При четном количестве отражений (на фиг.2 это пути 6 и 8), УЗ сигнал падает в точку A(x, z) со стороны той же поверхности слоя, где расположена АР (со стороны внешней поверхности). При нечетном количестве (на схеме это пути 7 и 9) - со стороны донной поверхности.

Если шероховатость поверхностей слоя достаточно мала и закон отражения УЗ сигнала от границ слоя можно считать зеркальным, то пространственное расположение точек отражений на каждом пути сигнала к точке A(x, z) строго определено координатами элемента АР, координатами точки A(x, z) и толщиной слоя материала d. Определен этими величинами и сам путь, т.е. его длина.

Согласно принципу взаимности эти же пути являются путями распространения УЗ сигналов, отраженных от любого отражателя (например, в точке A(x, z)) к приемному элементу АР. Следовательно, траектории распространения УЗ сигналов от элементов АР к любой точке плоскопараллельного ОК и обратно - к АР существуют двух видов: с четным общим количеством отражений от границ слоя и с нечетным количеством отражений.

Если неоднородность материала в точке A(x, z) рассеивает УЗ волны диффузно, то возможны траектории обоих видов. Пусть, например, падающий сигнал прошел по пути с одним отражением (путь 7 на фиг.2), а отраженный - по пути с двумя и тремя отражениями (пути 6 и 9 на фиг.2). Общее количество отражений сигнала в траекториях «путь 7 плюс путь 6» и «путь 7 плюс путь 9» соответственно три и четыре (нечетное и четное).

При зеркальном отражении УЗ сигнала в точке A(x, z) возможны только траектории с нечетным общим количеством отражений, т.к. сигнал, падающий в точку A(x, z) со стороны одной границы слоя, отражается в сторону другой границы, и любая траектория складывается из путей с четным и нечетным количеством отражений. В результате общее количество отражений - нечетное.

Таким образом, по известным координатам элементов АР, координатам точек в ОК и значению толщины d можно вычислить длины любых траекторий распространения УЗ сигналов в ОК при любом количестве отражений от донной и внешней поверхностей ОК. Используя значение скорости с, можно вычислить и все времена задержек эхоимпульсов от отражателя в точке A(x, z) в соответствующих реализациях принятых УЗ колебаний.

Пусть количество отражений УЗ сигнала от донной поверхности ОК на прямом пути его распространения от излучающего элемента АР с номером i к отражателю в точке A(x, z) равно pi, а количество отражений УЗ сигнала от внешней поверхности ОК на этом же пути равно qi. Аналогично обозначим количества отражений УЗ сигнала на обратном пути от точки A(x, z) к приемному элементу АР с номером j: pj и qj. Тогда общее количество I отражений УЗ сигнала от обеих границ ОК на прямом пути будет равно: I=pi+qi, количество отражений от границ на обратном пути: R=pj+qj. А время задержки эхо-импульса от отражателя в точке A(x, z) в реализации УЗ колебаний, полученной при излучении зондирующего импульса i-тым элементом АР и приеме колебаний j-тым элементом АР при общем количестве (I+R) всех отражений УЗ сигнала от границ ОК на всей траектории его распространения, выразится следующим образом:

В частности, для траектории распространения УЗ сигнала с pi=5, qi=4, pj=2, qj=2, I=9, R=4 формула (3) примет вид:

Если сложить все эхоимпульсы, пришедшие к АР из точки A(x, z) по всем траекториям от каждой пары элементов АР, то мы получим суммарный эхосигнал uA(t), амплитуда которого будет характеризовать отражательную способность материала ОК в точке A(x, z). Для этого необходимо выбрать из каждой реализации принятых УЗ колебаний фрагменты ui,j длительностью τu, с временами задержки, рассчитанными по формуле (3), совместить фрагменты на оси времени с точностью до фазы и алгебраически сложить соответствующие по времени мгновенные значения колебаний всех фрагментов:

где M - максимальное количество отражений УЗ сигнала от границ ОК на каждом из путей распространения сигнала к отражателю в точке A(x, z) и обратно, выбранное заранее для ограничения числа используемых траекторий.

Амплитуду UA полученного суммарного эхосигнала легко определить путем выделения его огибающей и взятия максимума полученной функции. В частности, это выполняется с помощью амплитудного детектирования суммарного эхо-сигнала (выпрямления с низкочастотной фильтрацией) или с помощью синхронного детектирования.

При выполнении изложенных операций для всех точек визуализируемого сечения ОК получается матрица амплитуд суммарных эхосигналов, которая при отображении ее на экране в цветояркостной форме представляет собой томограмму визуализируемого сечения ОК.

Функциональная схема устройства, реализующего описанный способ и показанная на фиг.3, содержит антенную решетку 10 с n приемно-передающими элементами 11, каждый из которых соединен с выходом соответствующего генератора импульсов 12 и входом соответствующей цепочки последовательно соединенных усилителя 13 и аналого-цифрового преобразователя (АЦП) 14.

Выход каждой из n цепочек усилитель 13 - АЦП 14 соединен с соответствующим входом памяти реализаций 15, количество выходов которой N определяется формулой:

N=n·(n+1)/2.

N выходов памяти реализаций 15 по количеству принятых реализаций УЗ колебаний соединены с соответствующими входами вычислительного блока 16, реализующего функцию:

,

с последующим детектированием полученного результата для ввода сигналов в память изображения 17, соединенную с дисплеем 18.

С вычислительным блоком 16 соединен блок накопительной памяти 19, который суммирует для каждой точки изображения все фрагменты реализаций с временами задержки, соответствующими временам распространения ультразвуковых сигналов как без отражений, так и с переотражениями их от границ объекта контроля.

Входы синхронизации каждого генератора импульсов 12, памяти реализаций 15, вычислительного блока 16 и памяти изображения 17 соединены с соответствующими выходами синхронизатора 20, синхронизирующего работу всех указанных блоков устройства.

Антенная решетка 10 установлена на объект контроля 21 и имеет с ним акустический контакт.

Устройство в соответствии с предложенным способом работает следующим образом.

По сигналу от синхронизатора 20 первый генератор импульсов 12 подает импульс возбуждения на первый элемент 11 АР 10. В ОК 21 излучается зондирующий импульс. В этот момент все элементы 11 АР 10, включая и ее первый элемент, начинают принимать УЗ колебания из ОК 21. Эти колебания, преобразованные в электрические колебания, усиливаются в усилителях 13, оцифровываются в АЦП 14 и записываются в память реализаций 15 независимо друг от друга, без каких-либо преобразований и временных сдвигов. Эти колебания записываются в интервале времени, превышающем с некоторым запасом время распространения УЗ колебаний от излучающего элемента 11 АР 10 к наиболее дальней визуализируемой точке ОК и обратно - к самому удаленному от нее приемному элементу 11. В этих колебаниях присутствует шум структуры материала ОК 21, импульсы отражений зондирующего сигнала от границ материала и в случае каких-либо несплошностей материала - импульсы отражений от них.

Далее генератор импульсов 12, соединенный со вторым элементом 11 АР 10, по сигналу от синхронизатора 20 возбуждает второй элемент, который посылает в ОК 21 зондирующий импульс. Снова происходит прием и запись принятых колебаний в память реализаций 15. Но колебания, принятые первым элементом 11 АР 10, в данном случае не записываются, т.к. реализация этих колебаний, согласно принципу взаимности, тождественна той, которая уже была принята вторым элементом 11 АР 10 при посылке зондирующего импульса ее первым элементом 11 в предыдущем цикле зондирования-приема УЗ колебаний.

Затем в третьем цикле зондирования-приема УЗ колебаний все происходит аналогично изложенному выше, только зондирующий импульс в ОК 21 посылает третий элемент 11 АР 10, а колебания в память реализаций 15 записываются ото всех элементов 11 АР 10, за исключением колебаний от первого и второго ее элементов.

В последнем, n-ном цикле зондирования-приема n-ный элемент 11 АР 10 исполняет роль излучателя и приемника УЗ колебаний, т.е. работает в совмещенном режиме. При этом в память реализаций 15 записывается всего одна реализация принятых колебаний.

После выполнения всех этих циклов зондирования-приема УЗ колебаний, т.е. после того как все элементы 11 АР 10 совершат по одной посылке зондирующего импульса, в памяти реализаций 15 окажутся записанными N=n·(n+1)/2 реализаций принятых колебаний. Каждая реализация - это результат зондирования и приема колебаний каждой из возможных пар элементов 11 АР 10, включая и совмещенные пары, когда излучатель и приемник - один и тот же элемент. В частности, если n=16, количество реализаций N=136.

После записи всех N реализаций в память реализаций 15 начинается реконструкция изображения внутренней структуры ОК поочередно для каждой визуализируемой точки.

Рассмотрим этот процесс для произвольно взятой в объекте точки А(х, z) с координатами x, z (см. фиг.1).

Для получения изображения отражательной способности отражателя в точке А(х, z) из каждой записанной реализации выбирается (считывается из памяти реализаций 15) фрагмент длительностью τu со временем задержки tAi,j(I, R). Значение этого времени предварительно вычисляется в вычислительном блоке 16. Причем вначале считываются фрагменты реализаций со временами задержки tAi,j(0,0). Все эти фрагменты содержат эхоимпульсы от отражателя в точке А(х, z) (если он там присутствует), полученные при разных ракурсах падения в эту точку и отражения от нее УЗ колебаний. Выбранные фрагменты в вычислительном блоке 16 совмещаются во времени t с точностью до фазы и суммируются. Промежуточный результат суммирования запоминается в накопительной памяти 19, связанной с вычислительным блоком 16.

Затем процесс выбора фрагментов реализаций и их суммирования повторяется, но выбираются фрагменты с временами задержки tAi,j(1,0). Результат суммирования второй группы фрагментов добавляется к результату суммирования первой группы. Далее то же повторяется для всех фрагментов со всеми временами задержки вплоть до tAi,j(M,M).

Один из возможных вариантов блока накопительной памяти 19 для формирования информации об отражательной способности одной визуализируемой точки ОК представляет собой (N+1)-входовый сумматор, выход которого соединен со входом ячейки памяти для временного хранения данных одного импульса длительностью τu. Выход этой ячейки памяти подключен к одному из N+1 входов сумматора. При одновременном считывании из памяти реализаций фрагментов реализаций с временами задержки tAi,j(k, l), где k, l - натуральные числа, меньшие M, из этой ячейки также одновременно с фрагментами считывается результат предыдущего суммирования, который суммируется со считываемыми фрагментами, и результат снова записывается в эту ячейку памяти. Вся накопительная память состоит из множества таких (N+1)-входовых сумматоров со своими ячейками памяти. Количество таких цепочек сумматоров и ячеек памяти равно количеству точек изображения.

Другой вариант накопительной памяти - это N двухвходовых сумматоров со своими ячейками памяти, выходы которых подключены к одному из входов соответствующего двухвходового сумматора. На свободный вход этого сумматора поступают суммы считываемых фрагментов реализаций, которые суммируются с данными, записанными в подключенной к нему ячейке памяти, и результат снова записывается в эту же ячейку.

Таким образом реализуется вычисление по формуле (5) суммарного эхосигнала от отражателя в точке А(х, z) с учетом всех возможных траекторий распространения УЗ сигнала, вплоть до траекторий с максимальным количеством отражений от границ ОК, равным М на каждом из путей от АР к точке А(х, z) и обратно.

Суммарный эхосигнал uA(t) затем в вычислительном блоке 16 детектируется (вычисляется его огибающая) и значение UA максимума полученной функции записывается в память изображения 17. Этому значению (числу) присваивается определенный цвет (или яркость) точки A(x, z) на экране дисплея 18.

Аналогично, операции считывания фрагментов, суммирования их, детектирования и записи результата в память изображения 17 поочередно производятся для всех точек визуализируемой области ОК 21. В итоге реконструируется изображение этой области.

Все точки изображения, таким образом, оказываются полученными как результат поочередной фокусировки антенной решетки 10 в каждую соответствующую точку ОК 21 с использованием не только траекторий распространения УЗ сигнала без отражений от границ материала ОК 21, но и с использованием множества траекторий с отражениями УЗ сигнала от границ ОК 21.

Таким образом, реализуются положительные эффекты изобретения, состоящие в следующем:

- повышается чувствительность к малым отражателям, т.к. при использовании еще и отражений от границ в результирующий суммарный эхосигнал накапливается больше энергии отраженного ультразвука;

- повышается разрешающая способность томографа из-за того, что отражатели озвучиваются под большим количеством ракурсов, т.е. с большего числа направлений под разными углами;

- появляется возможность селектировать вид отражателя: диффузно рассеивающего или направленно рассеивающего ультразвук. В частности, малые в сравнении с длиной волны отражатели и протяженные, особенно с гладкими поверхностями (трещины) по-разному отображаются на экране (лучше или хуже), если использовать не все траектории распространения УЗ сигналов, а специально выбираемые: с четным или нечетным количеством отражений ультразвука от границ ОК;

- улучшается качество изображения: лучше прорисовываются контуры отражателей, больших длины волны ультразвука, особенно в несколько длин волн вследствие большего количества ракурсов облучения отражателя;

- изображение получается адекватным реальному сечению ОК: мнимых образов на нем нет; все, что ниже (глубже) донной поверхности, - не отображается, а сигналы, вызывающие мнимые образы, дополнительно прорисовывают изображение в адекватных местах.

Похожие патенты RU2458342C1

название год авторы номер документа
КОМПЛЕКС ДЛЯ УЛЬТРАЗВУКОВОГО КОНТРОЛЯ ИЗДЕЛИЙ И ОПТИЧЕСКОЕ ИЗМЕРИТЕЛЬНОЕ УСТРОЙСТВО КОМПЛЕКСА 2012
  • Самокрутов Андрей Анатольевич
  • Шевалдыкин Виктор Гавриилович
  • Станкевич Александр Михайлович
  • Алёхин Сергей Геннадиевич
  • Авдеев Андрей Андреевич
  • Ананьев Игорь Валерьевич
  • Бишко Александр Владимирович
  • Дурейко Андрей Владимирович
  • Елькин Виталий Михайлович
  • Жуков Андрей Владимирович
  • Заец Максим Васильевич
  • Илюхин Юрий Владимирович
  • Манеев Максим Владимирович
  • Соколов Никита Юрьевич
  • Суворов Вячеслав Андреевич
  • Черкасов Владимир Константинович
RU2515957C1
СПОСОБ УЛЬТРАЗВУКОВОГО КОНТРОЛЯ ОБЪЕКТОВ ИЗ ТВЁРДЫХ МАТЕРИАЛОВ, УЛЬТРАЗВУКОВОЙ ВЫСОКОЧАСТОТНЫЙ ПРЕОБРАЗОВАТЕЛЬ ДЛЯ ЕГО РЕАЛИЗАЦИИ (ВАРИАНТЫ) И АНТЕННАЯ РЕШЁТКА С ПРИМЕНЕНИЕМ СПОСОБА 2017
  • Самокрутов Андрей Анатольевич
  • Шевалдыкин Виктор Гавриилович
  • Авдеев Андрей Андреевич
  • Беляев Николай Александрович
  • Козлов Антон Владимирович
RU2657325C1
УСТРОЙСТВО УЛЬТРАЗВУКОВОЙ ТОМОГРАФИИ 2013
  • Солдатов Алексей Иванович
  • Квасников Константин Григорьевич
  • Солдатов Андрей Алексеевич
  • Селезнев Антон Иванович
  • Болотина Ирина Олеговна
  • Сорокин Павел Владимирович
  • Макаров Виктор Степанович
RU2532606C1
СПОСОБ УЛЬТРАЗВУКОВОЙ ТОМОГРАФИИ 2023
  • Солдатов Алексей Иванович
  • Седнев Дмитрий Андреевич
  • Костина Мария Алексеевна
  • Солдатов Андрей Алексеевич
  • Квасников Константин Григорьевич
  • Конева Дарья Андреевна
RU2799111C1
СПОСОБ УЛЬТРАЗВУКОВОЙ ТОМОГРАФИИ 2023
  • Солдатов Алексей Иванович
  • Костина Мария Алексеевна
  • Солдатов Андрей Алексеевич
  • Седнев Дмитрий Андреевич
RU2817123C1
Способ ультразвуковой томографии 2016
  • Соколов Игорь Вячеславович
  • Качанов Владимир Климентьевич
  • Караваев Михаил Алексеевич
  • Федоров Максим Борисович
  • Синицын Алексей Алексеевич
RU2639986C1
УЛЬТРАЗВУКОВАЯ АНТЕННАЯ РЕШЁТКА 2016
  • Самокрутов Андрей Анатольевич
  • Шевалдыкин Виктор Гавриилович
  • Алёхин Сергей Геннадиевич
  • Заец Максим Васильевич
RU2629894C1
УСТРОЙСТВО УЛЬТРАЗВУКОВОЙ ТОМОГРАФИИ 2023
  • Солдатов Алексей Иванович
  • Седнев Дмитрий Андреевич
  • Костина Мария Алексеевна
  • Солдатов Андрей Алексеевич
  • Квасников Константин Григорьевич
  • Долматов Дмитрий Олегович
  • Конева Дарья Андреевна
RU2796813C1
СПОСОБ УЛЬТРАЗВУКОВОГО КОНТРОЛЯ ТРУБОПРОВОДА И СИСТЕМА ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2016
  • Самокрутов Андрей Анатольевич
  • Седелев Юрий Анатолиевич
  • Ворончихин Станислав Юрьевич
  • Шевалдыкин Виктор Гавриилович
  • Алёхин Сергей Геннадиевич
  • Заец Максим Васильевич
  • Кадров Андрей Александрович
RU2629896C1
Способ определения акустической плотности 2017
  • Самокрутов Андрей Анатольевич
  • Шевалдыкин Виктор Гавриилович
  • Булавинов Андрей Николаевич
  • Пинчук Роман Валерьевич
RU2657314C1

Иллюстрации к изобретению RU 2 458 342 C1

Реферат патента 2012 года СПОСОБ УЛЬТРАЗВУКОВОЙ ТОМОГРАФИИ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ

Использование: для ультразвуковой диагностики плоских металлоконструкций. Сущность: заключается в том, что выполняют излучение в объект контроля и прием из него ультразвуковых сигналов с помощью антенной решетки, фиксацию реализации ультразвуковых колебаний, принятых каждым элементом решетки при излучении ультразвукового сигнала независимо каждым ее элементом, и поточечное построение изображения внутренней структуры объекта путем выбора изо всех принятых реализаций тех фрагментов, времена задержки которых равны временам распространения ультразвуковых сигналов от излучающего элемента решетки к каждой визуализируемой точке объекта и от нее к приемному элементу, суммирования этих выбранных фрагментов для каждой точки изображения и записи результата суммирования, при этом, учитывая известную толщину объекта контроля, в результирующую сумму выбранных фрагментов реализаций для каждой точки изображения дополнительно включают выборки фрагментов, времена задержек которых равны временам распространения ультразвуковых сигналов, переотраженных от донной и внешней поверхностей объекта контроля на траекториях от излучающего элемента решетки к данной визуализируемой точке объекта и от нее к приемному элементу. Технический результат: повышение чувствительности к малым отражателям, а также повышение разрешающей способности. 2 н.п. и 1 з.п. ф-лы, 3 ил.

Формула изобретения RU 2 458 342 C1

1. Способ ультразвуковой томографии, включающий в себя излучение в объект контроля и прием из него ультразвуковых сигналов с помощью антенной решетки, фиксацию реализации ультразвуковых колебаний, принятых каждым элементом решетки при излучении ультразвукового сигнала независимо каждым ее элементом, и поточечное построение изображения внутренней структуры объекта путем выбора изо всех принятых реализаций тех фрагментов, времена задержки которых равны временам распространения ультразвуковых сигналов от излучающего элемента решетки к каждой визуализируемой точке объекта и от нее к приемному элементу, суммирования этих выбранных фрагментов для каждой точки изображения и записи результата суммирования, отличающийся тем, что при известной толщине объекта контроля в результирующую сумму выбранных фрагментов реализации для каждой точки изображения дополнительно включают выборки фрагментов, времена задержек которых равны временам распространения ультразвуковых сигналов, переотраженных от донной и внешней поверхностей объекта контроля на траекториях от излучающего элемента решетки к данной визуализируемой точке объекта и от нее к приемному элементу.

2. Устройство ультразвуковой томографии, содержащее антенную решетку с n приемно-передающими элементами, каждый из которых соединен с выходом соответствующего генератора импульсов и входом соответствующей цепочки последовательно соединенных усилителя и аналого-цифрового преобразователя, выход каждой из n указанных цепочек соединен с соответствующим входом памяти реализации, количество выходов которой - N определяется формулой
N=n·(n+1)/2,
выходы памяти реализации соединены с соответствующими входами вычислительного блока, связанного с дисплеем через память изображения, при этом входы синхронизации каждого генератора импульсов, памяти реализации, вычислительного блока и памяти изображения соединены с соответствующими выходами синхронизатора, отличающееся тем, что дополнительно введен соединенный с вычислительным блоком блок накопительной памяти, суммирующий для каждой точки изображения все фрагменты реализаций, времена задержки которых соответствуют временам распространения ультразвуковых сигналов как без отражений, так и с переотражениями их от границ объекта контроля.

3. Устройство по п.2, отличающееся тем, что вычислительный блок для каждой точки изображения реализует функцию
, ,
где uA(t) - суммарный эхосигнал, принятый антенной решеткой из точки А(x, z) объекта контроля с координатами x, z;
i, j - номера излучающих и приемных элементов антенной решетки соответственно;
I, R - общее количество отражений ультразвукового сигнала от обеих границ объекта контроля на прямом пути от антенной решетки к точке А(x, z) и на обратном пути от точки А(x, z) к антенной решетке соответственно;
М - максимальное количество отражений ультразвукового сигнала от обеих границ объекта контроля отдельно на прямом и обратном путях распространения сигнала, используемое при реконструкции изображения;
ui,j - фрагмент реализации, полученной от элементов i, j антенной решетки;
t - текущее время;
tAi,j(I, R) - время задержки фрагмента ui,j реализации, содержащего сигнал, прошедший по траектории с общим количеством (I+R) отражений от обеих границ объекта контроля;
τu - длительность зондирующего импульса,
с последующим детектированием полученного результата для ввода сигнала в память изображения.

Документы, цитированные в отчете о поиске Патент 2012 года RU2458342C1

Воронкова В.А., Воронкова И.В., Козлова В.Н., Самокрутова А.А., Шевалдыкина В.Г
О применимости технологии антенных решеток в решении задач ультразвукового контроля опасных производственных объектов
- В мире неразрушающего контроля, 2011, №1(51), с.64-70
Способ ультразвукового томографического контроля изделий 1990
  • Осетров Александр Владимирович
  • Туржанский Антон Анатольевич
SU1817019A1
Способ томографической реконструкции акустических неоднородностей 1989
  • Буров Валентин Андреевич
  • Глазков Александр Викторович
  • Рычагов Михаил Николаевич
  • Тагунов Евгений Яковлевич
SU1746219A1
Способ ультразвуковой томографии 1980
  • Рубашов Игорь Борисович
  • Черников Дмитрий Георгиевич
  • Тимонов Александр Анатольевич
  • Гуськов Евгений Константинович
  • Рапкин Юрий Ильич
  • Химунин Андрей Сергеевич
  • Михалев Борис Ермолаевич
SU983531A1
JP 2009153573 A, 16.07.2009
US 2005054924 A1, 10.03.2005.

RU 2 458 342 C1

Авторы

Алёхин Сергей Геннадиевич

Самокрутов Андрей Анатольевич

Соколов Никита Юрьевич

Шевалдыкин Виктор Гавриилович

Даты

2012-08-10Публикация

2011-05-25Подача