СПОСОБ ИЗГОТОВЛЕНИЯ ВНУТРИКОСТНОГО СТОМАТОЛОГИЧЕСКОГО ИМПЛАНТАТА С ИОННО-ЛУЧЕВОЙ МОДИФИКАЦИЕЙ ПЛАЗМОНАПЫЛЕННОГО МНОГОСЛОЙНОГО БИОАКТИВНОГО ПОКРЫТИЯ Российский патент 2012 года по МПК A61L27/02 A61C8/00 C23C14/00 C23C14/58 

Описание патента на изобретение RU2458707C1

Изобретение относится к области медицинской техники, а именно к ортопедической стоматологии, и может быть использовано при изготовлении внутрикостных имплантатов путем нанесения на их металлическую основу многослойных плазменных покрытий с последующей ионно-лучевой модификацией.

Известен способ изготовления внутрикостных стоматологических имплантатов с биоактивным покрытием [патент РФ №2074674, МПК: A61F 2/28], включающий изготовление из металла или сплава универсальным способом (токарная, фрезерная и др. методы обработки или с помощью специальных электрофизических методов) основы имплантата цилиндрической, пластинчатой или трубчатой формы, нанесение на основу имплантата методом плазменного напыления системы покрытий из четырех слоев - двух слоев титана или гидрида титана различной дисперсности и толщины, третьего слоя из механической смеси титана или гидрида титана, или гидроксиапатита с соотношением соответственно 60-80 мас.% и 20-40 мас.% и наружного слоя - гидроксиапатита.

Недостатком данного изобретения является невысокая биосовместимость и хрупкость покрытия.

Известен способ изготовления имплантата для замены костной ткани [патент РФ №2025132, МПК A61F 2/28], согласно которому на имплантат, выполненный из металлического или металл-керамического сплава в виде штифта, наносят трехслойное покрытие, при этом первый слой содержит биостекло на основе фосфата кальция с добавлением оксидов металлов, второй слой - смесь фосфата кальция и гидроксиапатита, а промежуточный слой содержит фосфат кальция.

Однако многокомпонентная система покрытий (СаР-стекло, гидроксиапатит кальция, трикальцийфосфат и добавки оксидов металлов) с различными коэффициентами термического расширения не способствует прочному закреплению слоев покрытия (особенно первого слоя) с металлической основной имплантата, покрытие также не обладает высокой биоактивностью.

Наиболее близким к предлагаемому изобретению является способ изготовления внутрикостного стоматологического имплантата с плазмонапыленным многослойным биоактивным покрытием [патент РФ №2146535, МПК A61L 27/00, А61С 8/00], состоящий в напылении плазменным методом на титановую основу имплантата системы покрытий различной дисперсности и толщины, состоящей из пяти слоев: первых двух из титана или гидрида титана, последующих двух слоев из смеси титана или гидрида титана с гидроксиапатитом кальция, отличающихся содержанием компонентов в слоях, и наружного, пятого слоя из гидроксиапатита кальция. Напыление ведут послойно при различных режимах, обеспечивающих плавный переход от компактной структуры титановой основы имплантата через многослойную систему переходного покрытия к тонкому биологически активному поверхностному пористому слою.

Однако при плазменном напылении биоактивного порошка теряются многие исходные химические свойства, что приводит к недостаточной биоактивности покрытия. Кроме того, покрытие является хрупким, что не позволяет использовать его при изготовлении высоконагруженных имплантатов.

Задача изобретения заключается в повышении биоактивности и механической прочности имплантата.

Техническим результатом является образование в поверхностном слое системы покрытий имплантата большого количества упрочняющих фаз, препятствующих развитию усталостных трещин и выходу их на поверхность, а также образование на поверхности системы покрытий тонкой беспористой наноразмерной алмазоподобной пленки, способствующей быстрому росту костной ткани.

Поставленная задача решается тем, что в способе изготовления внутрикостного имплантата, включающем пескоструйную обработку поверхности имплантата частицами оксида алюминия, послойное напыление плазменным методом на основу имплантата системы биосовместимых покрытий из смеси порошков титана или гидрида титана и гидроксиапатита кальция, при этом первым слоем напыляют титан или гидрид титана дисперсностью 3-5 мкм с дистанцией напыления 70-80 мм и толщиной 5-10 мкм, вторым слоем - титан или гидрид титана дисперсностью 50-100 мкм с дистанцией напыления 100 мм, толщиной 15-20 мкм, третьим слоем напыляют смесью титана или гидрида титана дисперсностью 50-100 мкм и гидроксиапатита кальция дисперсностью 5-10 мкм, с соотношением 70-80 и 30-20 мас.% соответственно, с дистанцией напыления 90-100 мм и толщиной слоя 30-50 мкм, четвертым слоем - смесь титана или гидрида титана дисперсностью 50-100 мкм и гидроксиапатита кальция дисперсностью 20-40 мкм, с соотношением 50-60 и 50-40 мас.% соответственно, с дистанцией напыления 80-85 мм и толщиной 30-50 мкм, пятым слоем напыляют гидроксиапатит кальция дисперсностью 40-70 мкм с дистанцией напыления 70 мм и толщиной слоя 20-30 мкм, согласно предлагаемому техническому решению, многослойную систему биосовместимых покрытий облучают в вакуумной среде углеводородного газа высокоэнергетическими ионами инертного газа с энергией 40-130 кэВ и дозой облучения 2000-5000 мкКл/см2.

Изобретение поясняется чертежами, где на фиг.1 представлена схема послойного формирования покрытий, на фиг.2 - схема ионно-лучевой обработки системы покрытий.

Предлагаемый способ изготовления стоматологического имплантата осуществляют следующим образом (см. фиг.1). Перед напылением поверхность основы металлического имплантата 1 подвергают пескоструйной обработке частицами оксида алюминия, затем наносят первый слой 2 толщиной 5-10 мкм из порошка титана или гидрида титана дисперсностью 3-5 мкм с расстояния 70-80 мкм; второй слой 3 толщиной 15-20 мкм напыляют титаном или гидридом титана дисперсностью 50-100 мкм с дистанцией напыления 100 мм; третий слой 4 толщиной 30-50 мкм - смесью титана или гидрида титана (70-80 мас.%) и гидроксиапатита кальция (30-20 мас.%) дисперсностью 50-100 мкм и 5-10 мкм соответственно, с расстояния 90-100 мм; четвертый слой 5 толщиной 30-50 мкм - смесью титана или гидрида титана (50-60 мас.%) с гидроксиапатитом кальция (50-40 мас.%) дисперсностью 50-100 мкм и 20-40 мкм, с дистанцией напыления 80-85 мм и пятый слой 6 толщиной 20-30 мкм напыляют гидроксиапатитом кальция дисперсностью 40-70 мкм с расстояния 70 мм, соответственно. Напыление осуществляют плазменным методом в атмосфере в струе защитного газа, например аргона, при этом расход плазмообразующего газа составляет 20-40 л/мин. Скорость перемещения плазмотрона при напылении 80-700 мм/мин, ток плазменной дуги составляет 450-540 А, напряжение дуги 30 В, скорость вращения детали 110-160 об/мин.

Затем изделие с многослойной системой покрытий закрепляют на барабане 7 (см. фиг.2) в установке ионно-лучевого легирования, например «Везувий-5» (Мейер Дж. Эриксон Л. «Ионное легирование полупроводников» 1970 г. М.: Мир). В объеме приемной камеры 8 установки откачивают давление до 10-6 мм рт.ст. с помощью высоковакуумных насосов 9, которое фиксируют ионизационным датчиком высокого вакуума 10 и вакуумметром 11. Далее, по команде оператора, в камеру 8 через игольчатый клапан 12 из баллона 13 по герметичному трубопроводу 14 в объем приемной камеры 8 подают реакционный углеводородный газ, например оксид углерода (СО) или углеводорода (СН), при этом давление в камере по средствам ЭВМ 15 (автоматически) изменяют в сторону повышения, но не более 10-4 мм рт.ст., что фиксируется ионизационным датчиком высокого вакуума 10 и вакуумметром 11. Сигнал с датчика высокого вакуума 10 поступает на электронный блок 16, где происходит сравнение полученных значений вакуума с заданной величиной. Далее сигнал через устройство сопряжения с объектом 17 (УСО) передается на ЭВМ и уже затем на источник питания привода 18 игольчатого клапана 12. Данный процесс повторяется постоянно с целью поддержания заданной величины давления в объеме приемной камеры 8 установки. Далее изделие с многослойной системой покрытий, находящееся на барабане 7 в приемной камере 8, облучают ионами инертного газа с энергией 40-130 кэВ и интегральной дозой 2000-5000 мкКл/см2, например ионами аргона (Ar) или неона (Ne) (см. табл.1, 2), которые образуются в разрядной камере ионного источника 19 за счет ионизации паров рабочего вещества в дуговом разряде и вытягиваются из него при помощи электрода.

Облучение изделий осуществляют в среде газа, например CO, CH, являющегося источником углерода, необходимого для синтеза на поверхности изделий углеродсодержащей наноразмерной алмазоподобной полимерной пленки. При ионно-лучевой обработке в поверхностном слое адсорбированных углеродсодержащих фрагментов происходят процессы ионизации и диссоциации молекул, приводящие к возникновению заряженных радикалов, процесс сшивания которых стимулируется энергетическим воздействием ионно-лучевой обработки и контролируется поступлением электронов из нижележащего металла. По мере увеличения толщины заполимеризовавшегося слоя поступление электронов к поверхности реакции затрудняется и при достижении толщины порядка длины туннелирования электронов рост алмазоподобной полимерной пленки прекращается. Наиболее интенсивно процесс роста протекает на участках заполимеризовавшегося слоя с меньшей толщиной и порами, что обеспечивает высокую равномерность и беспористость пленки.

Облучение многослойных биосовместимых покрытий высокоэнергетическими ионами инертного газа, например Ar, He, Xe, Rn, Kr, Ne, являющимися химически не активными с металлом, обеспечивает максимальную прочность сцепления покрытия с соседними слоями и с подложкой, за счет ионного перемешивания фрагментов адсорбированной на поверхности покрытий полимерной пленкой с приповерхностным слоем металла. Облучение высокоэнергетическими ионами инертного газа способствует появлению на многослойном покрытии равномерной алмазоподобной беспористой полимерной пленки, обладающей высокой химической инертностью и механической прочностью, способствующей быстрому росту костной ткани. После облучения системы покрытий в структуре образуется большое количество упрочняющих фаз, препятствующих развитию усталостных трещин. При введении в костную ткань такого имплантата с алмазоподобным покрытием наблюдается эффективное прорастание кости в поры покрытия, что обеспечивает прочное закрепление имплантата и длительное его функционирование в организме.

В таблицах 1, 2 представлены характеристики получаемого покрытия в зависимости от дозы и энергии облучения, соответственно.

Таблица 1 Энергия, Е, кВ Доза, Ф,
мкКл/см2
Ионы Микротвердость, Q, кгс/мм2 Ионы Микротвердость, Q, кгс/мм2
- - - 70 - 70 500 250 200 1000 290 232 2000 330 264 75 3000 Ar 350 Ne 297 4000 335 285 5000 320 272 6000 300 240 7000 250 200

Таблица 2 Доза, Ф, мк Кл/см2 Энергия, Е, кВ Ионы Микротвердость, Q, кгс/мм2 Ионы Микротвердость,
Q, кгс/мм2
- - - 70 - 70 30 317 248 40 350 290 60 352 290 3000 80 Ar 350 Ne 297 100 350 295 120 352 290 130 350 290 150 337 267

Из таблиц 1, 2 видно, что наиболее оптимальными диапазонами энергии и дозы облучения, при котором покрытия обладают высокой механической прочностью, являются значения 40-130 кэВ, 2000-5000 мкКл/см2, соответственно.

При ионно-лучевом облучении покрытий с энергетическим воздействием менее 40 кэВ процесс сшивки полимерной углеродсодержащей пленки происходит менее эффективно, т.к. ионам недостаточно энергетического воздействия, необходимого для разрыва химических связей атомов кристаллической решетки нижележащего металла, а при облучении с энергетическим воздействием более 130 кэВ внедряемые ионы из-за большой глубины проникновения затрудняют выход электронов на поверхность покрытий к месту синтеза углеродсодержащей полимерной пленки, что приводит к уменьшению механической прочности покрытий.

Таким образом, предлагаемое техническое решение позволяет повысить механическую прочность и биоактивность покрытия за счет образования на нем алмазоподобной беспористой наноразмерной химически инертной пленки, активно стимулирующей рост костной ткани и обладающей высокой твердостью.

Похожие патенты RU2458707C1

название год авторы номер документа
СПОСОБ ИЗГОТОВЛЕНИЯ ВНУТРИКОСТНОГО ИМПЛАНТАТА С ИОННО-ЛУЧЕВОЙ МОДИФИКАЦИЕЙ 2013
  • Муктаров Орынгали Джулдгалиевич
  • Перинская Ирина Владимировна
  • Лясников Владимир Николаевич
  • Перинский Владимир Владимирович
RU2530568C1
СПОСОБ ИЗГОТОВЛЕНИЯ ВНУТРИКОСТНОГО СТОМАТОЛОГИЧЕСКОГО ИМПЛАНТАТА С УГЛЕРОДНЫМ НАНОПОКРЫТИЕМ 2014
  • Рубштейн Анна Петровна
  • Владимиров Александр Борисович
  • Плотников Сергей Александрович
  • Пушкарь Сергей Сергеевич
RU2571559C1
СПОСОБ ИЗГОТОВЛЕНИЯ ВНУТРИКОСТНОГО СТОМАТОЛОГИЧЕСКОГО ИМПЛАНТАТА С УГЛЕРОДНЫМ НАНОПОКРЫТИЕМ 2012
  • Лясников Владимир Николаевич
  • Перинский Владимир Владимирович
  • Муктаров Орынгали Джулдгалиевич
RU2490032C1
СПОСОБ ИЗГОТОВЛЕНИЯ ВНУТРИКОСТНОГО СТОМАТОЛОГИЧЕСКОГО ИМПЛАНТАТА 2013
  • Лясников Владимир Николаевич
  • Протасова Наталия Владимировна
  • Муктаров Орынгали Джулдгалиевич
RU2525737C1
СПОСОБ ИЗГОТОВЛЕНИЯ ВНУТРИКОСТНОГО СТОМАТОЛОГИЧЕСКОГО ИМПЛАНТАТА С ПЛАЗМОНАПЫЛЕННЫМ МНОГОСЛОЙНЫМ БИОАКТИВНЫМ ПОКРЫТИЕМ 1998
  • Лясников В.Н.
  • Верещагина Л.А.
  • Лепилин А.В.
  • Рыжков В.Б.
RU2146535C1
СПОСОБ ИЗГОТОВЛЕНИЯ ВНУТРИКОСТНЫХ ИМПЛАНТАТОВ С БИОАКТИВНЫМ ПОКРЫТИЕМ 2013
  • Лясникова Александра Владимировна
  • Дударева Олеся Александровна
RU2530573C1
СПОСОБ ИЗГОТОВЛЕНИЯ ВНУТРИКОСТНЫХ ИМПЛАНТАТОВ 2010
  • Мельникова Ираида Прокопьевна
  • Лясникова Александра Владимировна
  • Лясников Владимир Николаевич
RU2443434C1
СПОСОБ ИЗГОТОВЛЕНИЯ ВНУТРИКОСТНЫХ ИМПЛАНТАТОВ С МНОГОСЛОЙНЫМ ПОКРЫТИЕМ 2013
  • Лясникова Александра Владимировна
  • Лясников Владимир Николаевич
  • Дударева Олеся Александровна
  • Гришина Ирина Петровна
RU2526252C1
СПОСОБ ИЗГОТОВЛЕНИЯ ВНУТРИКОСТНЫХ ИМПЛАНТАТОВ С АНТИМИКРОБНЫМ ЭФФЕКТОМ 2013
  • Мельникова Ираида Прокопьевна
  • Лясникова Александра Владимировна
  • Лясников Владимир Николаевич
RU2512714C1
Способ изготовления дентального имплантата с использованием композитного нанопокрытия 2018
  • Фадеев Иван Анатольевич
  • Дюрягин Алексей Сергеевич
  • Дюрягин Василий Сергеевич
  • Орлов Василий Сергеевич
  • Денисов Алексей Вячеславович
RU2765921C1

Иллюстрации к изобретению RU 2 458 707 C1

Реферат патента 2012 года СПОСОБ ИЗГОТОВЛЕНИЯ ВНУТРИКОСТНОГО СТОМАТОЛОГИЧЕСКОГО ИМПЛАНТАТА С ИОННО-ЛУЧЕВОЙ МОДИФИКАЦИЕЙ ПЛАЗМОНАПЫЛЕННОГО МНОГОСЛОЙНОГО БИОАКТИВНОГО ПОКРЫТИЯ

Изобретение относится к области медицины, а именно к ортопедической стоматологии, и может быть использовано при изготовлении внутрикостных имплантатов путем нанесения на их металлическую основу многослойных плазменных покрытий с последующей ионно-лучевой модификацией. Предлагаемый способ изготовления внутрикостного имплантата включает пескоструйную обработку поверхности имплантата частицами оксида алюминия, послойное напыление плазменным методом на основу имплантата системы биосовместимых покрытий различной дисперсности и толщины, состоящей из пяти слоев: первых двух из титана или гидрида титана, последующих двух слоев из смеси титана или гидрида титана с гидроксиапатитом кальция, отличающихся содержанием компонентов в слоях, и пятого слоя из гидроксиапатита кальция, после чего многослойную систему биосовместимых покрытий облучают в вакуумной среде углеводородного газа высокоэнергетическими ионами инертного газа с энергией 40-130 кэВ и дозой облучения 2000-5000 мкКл/см2. Способ обеспечивает повышение биоактивности и механической прочности имплантата. 2 табл., 2 ил.

Формула изобретения RU 2 458 707 C1

Способ изготовления внутрикостного стоматологического имплантата с ионно-лучевой модификацией плазмонапыленного многослойного биосовместимого покрытия, включающий пескоструйную обработку поверхности имплантата частицами оксида алюминия, послойное напыление плазменным методом на основу имплантата системы биосовместимых покрытий из смеси порошков титана или гидрида титана и гидроксиапатита кальция, при этом первым слоем напыляют титан или гидрид титана дисперсностью 3-5 мкм с дистанцией напыления 70-80 мм и толщиной 5-10 мкм, вторым слоем - титан или гидрид титана дисперсностью 50-100 мкм с дистанцией напыления 100 мм, толщиной 15-20 мкм, третьим слоем напыляют смесью титана или гидрида титана дисперсностью 50-100 мкм и гидроксиапатита кальция дисперсностью 5-10 мкм, с соотношением 70-80 и 30-20 мас.% соответственно, с дистанцией напыления 90-100 мм и толщиной слоя 30-50 мкм, четвертым слоем -смесь титана или гидрида титана дисперсностью 50-100 мкм и гидроксиапатита кальция дисперсностью 20-40 мкм, с соотношением 50-60 и 50-40 мас.% соответственно, с дистанцией напыления 80-85 мм и толщиной 30-50 мкм, пятым слоем напыляют гидроксиапатит кальция дисперсностью 40-70 мкм с дистанцией напыления 70 мм и толщиной слоя 20-30 мкм, отличающийся тем, что многослойную систему биосовместимых покрытий облучают в вакуумной среде углеводородного газа высокоэнергетическими ионами инертного газа с энергией 40-130 кэВ и дозой облучения 2000-5000 мкКл/см2.

Документы, цитированные в отчете о поиске Патент 2012 года RU2458707C1

СПОСОБ ИЗГОТОВЛЕНИЯ ВНУТРИКОСТНОГО СТОМАТОЛОГИЧЕСКОГО ИМПЛАНТАТА С ПЛАЗМОНАПЫЛЕННЫМ МНОГОСЛОЙНЫМ БИОАКТИВНЫМ ПОКРЫТИЕМ 1998
  • Лясников В.Н.
  • Верещагина Л.А.
  • Лепилин А.В.
  • Рыжков В.Б.
RU2146535C1
JP 2005034333 A, 10.02.2005
KR 100809574 B1, 04.03.2008
УСТРОЙСТВО ДЛЯ ПОГЛОЩЕНИЯ ИЗ ГАЗОВ ВОДЯНЫХ И ДРУГИХ ПАРОВ 1926
  • Э.Ч. Холдин
SU6030A1
Аппарат для цинкования железных листов 1924
  • Беркович Х.М.Я.
SU1402A1
СПОСОБ ПЛАЗМЕННОЙ ОБРАБОТКИ ПОВЕРХНОСТИ ИЗДЕЛИЯ 2007
  • Пименов Валерий Николаевич
  • Демина Елена Викторовна
  • Грибков Владимир Алексеевич
  • Масляев Сергей Алексеевич
  • Иванов Лев Иванович
  • Дубровский Александр Викторович
  • Ковтун Алексей Викторович
RU2340703C1
СПОСОБ ПОЛУЧЕНИЯ НАНОСТРУКТУРИРОВАННЫХ ПЛЕНОЧНЫХ ПОКРЫТИЙ (ВАРИАНТЫ) 2008
  • Вершок Борис Аронович
  • Мартыненко Юрий Владимирович
  • Обрезков Олег Иосифович
  • Смирнов Валентин Пантелеймонович
RU2371513C1

RU 2 458 707 C1

Авторы

Перинский Владимир Владимирович

Муктаров Орынгали Джулдгалиевич

Перинская Ирина Владимировна

Лясников Владимир Николаевич

Даты

2012-08-20Публикация

2011-03-17Подача