УСТРОЙСТВО ДЛЯ ПОЛУЧЕНИЯ ЖЕЛЕЗНОГО ПОРОШКА, СОДЕРЖАЩЕГО ФОСФОР Российский патент 2012 года по МПК B22F1/00 C22C33/02 

Описание патента на изобретение RU2458760C2

Изобретение относится к порошковой металлургии, в частности к устройствам для получения железного порошка, содержащего фосфор.

Известно, что железный порошок, содержащий фосфор, получают смешением карбонильного железа с элементарным фосфором и нагреванием полученной массы во вращающейся трубке из жаропрочного материала, например из кварца (патент РФ №2211113, МПК B22F 1/00, C22C 1/04, 33/02, опубл. 27.08.2003 в бюл. №24). За счет значительной реакционной способности порошка карбонильного железа в реакционной емкости протекает экзотермическая реакция. Реакцию проводят при атмосферном давлении и с постоянной продувкой инертного газа. Далее полученный продукт охлаждают и измельчают в порошок, например, с помощью мельниц.

Таким образом, следует отметить, что осуществление известного способа получения порошка карбонильного железа, содержащего фосфор, в реакционной емкости, имеющей корпус в виде нагреваемой трубы из жаропрочного материала, будет сопровождаться значительным выделением фосфора в виде паров в атмосферу инертного газа. Унос же фосфора из реакционной емкости с инертным газом снижает выход продукта (фосфидов железа) и повышает опасность проведения реакционного процесса. Кроме того, охлаждение железного порошка в естественных условиях требует значительного времени, что увеличивает продолжительность технологического процесса.

Задачей настоящего изобретения является создание устройства для получения железного порошка, содержащего фосфор.

Поставленная задача решается следующим образом.

Устройство для получения железного порошка, содержащего фосфор, имеющее корпус в виде трубы из жаропрочного материала, выполнено таким образом, что корпус содержит крышку и днище с возможностью обогрева, на корпусе выполнены верхняя и нижняя распределительные камеры с патрубками для теплоносителя, распределительные камеры соединены теплообменными каналами, поверх теплообменных каналов выполнены электрические нагреватели, а во внутренней полости корпуса установлен стакан для реакционной смеси. В предлагаемом устройстве теплообменные каналы выполнены в сечении в виде полукруга, треугольника, квадрата или прямоугольника. Устройство содержит патрубки для подвода и отвода инертного газа.

Сущность изобретения поясняется чертежом, где представлен общий вид устройства для получения железного порошка, содержащего фосфор, и вид А-А данного устройства.

Устройство для получения железного порошка, содержащего фосфор, имеет корпус 1 в виде трубы из жаропрочного материала. Корпус 1 содержит крышку 2 и днище 3, причем днище 3 имеет возможность обогрева с помощью электрического нагревателя 8. На корпусе 1 выполнены верхняя 5 и нижняя 6 распределительные камеры с патрубками для теплоносителя. Распределительные камеры 5 и 6 соединены теплообменными каналами 7. Теплообменные каналы 7 могут быть выполнены в сечении в виде полукруга, треугольника, квадрата или прямоугольника. Поверх теплообменных каналов 7 выполнены электрические нагреватели 8. Во внутренней полости корпуса 1 устанавливается стакан 4 для реакционной смеси. На корпусе 1 устройства выполнены патрубки 9 для подвода и отвода инертного газа.

Устройство для получения железного порошка, содержащего фосфор, работает следующим образом.

Предварительно перемешанная смесь из порошка карбонильного железа и красного фосфора загружается в стакан 4, который помещается во внутреннюю полость корпуса 1 на днище 3 устройства. Корпус 1 герметично закрывается крышкой 2. В крышке 2 и в корпусе 1 могут быть предусмотрены патрубки для замера режимных параметров (давления и температуры). Устройство предварительно продувается инертным газом, например азотом, посредством патрубков 9, затем закрывается вход и выход инертного газа и устанавливается заданное начальное избыточное давление в корпусе 1. Далее устройство нагревается до заданной температуры с помощью электрических нагревателей 8, которые выполнены поверх теплообменных элементов 7 и под днищем 3. Теплообменные каналы 7 могут быть выполнены в сечении в виде полукруга, треугольника, квадрата или прямоугольника. Такая форма каналов 7 является наиболее технологичной для намотки на них электрических нагревателей 8. Тепло от электрических нагревателей 8 во внутреннюю полость корпуса 1 передается в основном за счет теплопроводности материала стенки теплообменных элементов 7. Далее нагрев отключается и реакция образования порошка карбонильного железа, содержащего фосфор, протекает за счет выделения тепла при экзотермической реакции в стакане 4. Окончание реакции фиксируется по началу падения температуры в устройстве. Затем устройство интенсивно охлаждается до безопасной температуры путем подачи теплоносителя, например воды, в теплообменные каналы 7 через патрубок в нижней распределительной камере 6. Отвод теплоносителя из устройства осуществляется посредством патрубка в верхней распределительной камере 5. Интенсивность охлаждения продукта в предлагаемом устройстве в несколько раз выше, чем охлаждение в естественных условиях. Это легко доказывается путем анализа показателей интенсивности теплоотдачи от какой-либо поверхности в воздух (при естественных условиях) и в воду. Коэффициент теплоотдачи в воздух α1=35-60 Вт/(м2·гр), коэффициент теплоотдачи в воду α2=1200-5800 Вт/(м2·гр) (Павлов К.Ф., Романков П.Г., Носков А.А. Примеры и задачи по курсу процессов и аппаратов химической технологии. Л.: Химия, 1981. С.169). Таким образом, охлаждение продукта в устройстве будет происходить в 30-100 раз интенсивней.

После охлаждения устройства до безопасной температуры из него извлекается стакан 4 при открывании крышки 2. Полученный спеченный продукт удаляется из стакана 4 и далее измельчается.

При таком проведении процесса в предлагаемом устройстве мы имеем продукт, не содержащий свободного элементарного фосфора. В газовой фазе из устройства свободный элементарный фосфор также не обнаружен.

Таким образом, потери фосфора отсутствуют, и выход продукта составляет до 100%. Отсутствие выделения фосфора в газовую фазу повышает также уровень взрыво-пожаробезопасности, а интенсификация охлаждения продукта снижает продолжительность технологического процесса.

Таким образом, предлагаемое техническое решение показывает эффективность устройства для получения железного порошка, содержащего фосфор.

Похожие патенты RU2458760C2

название год авторы номер документа
УСТАНОВКА ДЛЯ ПОЛУЧЕНИЯ ПОРОШКА КАРБОНИЛЬНОГО ЖЕЛЕЗА 2008
  • Когтев Сергей Евгеньевич
  • Смирнов Сергей Игоревич
RU2377098C1
СПОСОБ ПОЛУЧЕНИЯ ЖЕЛЕЗНОГО ПОРОШКА, СОДЕРЖАЩЕГО ФОСФОР 2010
  • Когтев Сергей Евгеньевич
  • Смирнов Сергей Игоревич
  • Антипов Илья Евгеньевич
RU2433018C1
РЕАКТОР СМЕШЕНИЯ 2021
  • Шомова Елена Викторовна
  • Федюхин Александр Валерьевич
  • Султангузин Ильдар Айдарович
  • Кубрин Никита Александрович
RU2768926C1
УСТАНОВКА КАРБОНИЗАЦИИ ВОЛОКНИСТЫХ ВИСКОЗНЫХ МАТЕРИАЛОВ ДЛЯ ПОЛУЧЕНИЯ КОМБИНИРОВАННЫХ УГЛЕРОДНЫХ НИТЕЙ 2012
  • Черненко Дмитрий Николаевич
  • Бейлина Наталья Юрьевна
  • Черненко Николай Михайлович
RU2506356C1
Кожухотрубный каталитический реактор 2016
  • Андреев Олег Петрович
  • Карасевич Александр Мирославович
  • Хатьков Виталий Юрьевич
  • Баранцевич Станислав Владимирович
  • Зоря Алексей Юрьевич
  • Кейбал Александр Викторович
RU2636507C1
ТЕПЛООБМЕННЫЙ АППАРАТ (ВАРИАНТЫ) 2007
  • Низамиев Лут Бурганович
  • Низамиев Ильнур Лутович
  • Гуреев Виктор Михайлович
  • Гортышов Юрий Федорович
RU2372572C2
Массообменный аппарат 2020
  • Науменко Николай Александрович
  • Никольский Егор Евгеньевич
RU2743760C1
УСТРОЙСТВО ДЛЯ ПОЛУЧЕНИЯ ПОРОШКА ТАНТАЛА 2016
  • Обгольц Олег Яковлевич
  • Волынкин Владимир Петрович
  • Фролова Лариса Михайловна
  • Ангилевко Валерий Николаевич
RU2647966C2
ИНДУКЦИОННЫЙ ПИРОЛИЗНЫЙ РЕАКТОР ВОДОРОДА И ТВЕРДОГО УГЛЕРОДА ИЗ УГЛЕВОДОРОДНЫХ ГАЗОВ И СПОСОБ ИХ ПОЛУЧЕНИЯ 2021
  • Торопов Алексей Леонидович
RU2780486C1
СУБЛИМАЦИОННЫЙ АППАРАТ ДЛЯ ГЛУБОКОЙ ОЧИСТКИ ВЕЩЕСТВ 2013
  • Русаков Игорь Юрьевич
  • Буйновский Александр Сергеевич
  • Софронов Владимир Леонидович
  • Ануфриева Александра Валерьевна
RU2524734C1

Иллюстрации к изобретению RU 2 458 760 C2

Реферат патента 2012 года УСТРОЙСТВО ДЛЯ ПОЛУЧЕНИЯ ЖЕЛЕЗНОГО ПОРОШКА, СОДЕРЖАЩЕГО ФОСФОР

Изобретение относится к порошковой металлургии, в частности к устройствам для получения железного порошка, содержащего фосфор. Устройство имеет корпус в виде трубы из жаропрочного материала. При этом корпус снабжен крышкой и днищем с возможностью обогрева и установки стакана для реакционной смеси во внутреннюю полость корпуса. На корпусе выполнены верхняя и нижняя распределительные камеры с патрубками для теплоносителя. Распределительные камеры соединены теплообменными каналами, а поверх теплообменных каналов выполнены электрические нагреватели. Технический результат заключается в повышении эффективности получения железного порошка, содержащего фосфор. 2 з.п. ф-лы, 1 ил.

Формула изобретения RU 2 458 760 C2

1. Устройство для получения железного порошка, содержащего фосфор, имеющее корпус в виде трубы из жаропрочного материала, отличающееся тем, что корпус снабжен крышкой и днищем с возможностью обогрева и установки стакана для реакционной смеси во внутреннюю полость корпуса, при этом на корпусе выполнены верхняя и нижняя распределительные камеры с патрубками для теплоносителя, распределительные камеры соединены теплообменными каналами, поверх теплообменных каналов выполнены электрические нагреватели.

2. Устройство по п.1, отличающееся тем, что теплообменные каналы выполнены в сечении в виде полукруга, треугольника, квадрата или прямоугольника.

3. Устройство по п.1, отличающееся тем, что на корпусе выполнены патрубки для подвода и отвода инертного газа.

Документы, цитированные в отчете о поиске Патент 2012 года RU2458760C2

ЖЕЛЕЗНЫЙ ПОРОШОК, СОДЕРЖАЩИЙ ФОСФОР, И СПОСОБ ЕГО ПОЛУЧЕНИЯ 1998
  • Лойтнер Бернд
  • Фридрих Габриеле
  • Шлегель Райнхольд
RU2211113C2
МЕЛКОЗЕРНИСТОЕ ЖЕЛЕЗО, СОДЕРЖАЩЕЕ ФОСФОР, И СПОСОБ ЕГО ПОЛУЧЕНИЯ 1998
  • Лойтнер Бернд
  • Фридрих Габриеле
  • Шлегель Райнхольд
RU2206431C2
US 6180235 В1, 30.01.2001
US 4126452 А, 21.11.1978.

RU 2 458 760 C2

Авторы

Когтев Сергей Евгеньевич

Смирнов Сергей Игоревич

Антипов Илья Евгеньевич

Даты

2012-08-20Публикация

2010-10-25Подача