Массообменный аппарат Российский патент 2021 года по МПК B01J8/02 B01D15/00 F28D7/04 

Описание патента на изобретение RU2743760C1

Изобретение относится к аппаратам для проведения процессов взаимодействия неподвижной твердой фазы с жидкой или газовой фазами при повышенных температурах и может быть использовано для реализации процессов сорбции/адсорбции, каталитического окисления элементов в фармацевтической, химической, атомной и других отраслях промышленности, в частности, при работе с радиоактивными средами.

Как известно, в основе работы теплообменных аппаратов различных типов (теплообменники типа труба в трубе, кожухотрубчатый, пластинчатый и т.д.) лежит процесс передачи тепла от одного теплоносителя к другому через поверхность теплообмена - стенку, выполненную из теплопроводящего материала.

Известен реактор (патент СССР SU 1627241, опубл. 15.02.1991), который содержит вертикальный корпус с рубашкой, внутренние секционные трубчатые теплообменники, циркуляционную трубу с конически днищем и перемешивающим устройством. В коническом днище циркуляционной трубы равномерно по окружности выполнен ряд сквозных отверстий, в которых закреплены полые вертикальные трубы, содержащие секционные трубчатые теплообменники. Сквозные отверстия с полыми трубами расположены на одинаковом расстоянии от перемешивающего устройства, установленного на вершине конуса днища. Изобретение позволяет повысить производительность за счет увеличения удельной поверхности теплообмена.

Недостаток реактора заключается в том, что жидкая фаза начинает нагреваться только после поступления в реакционный объем аппарата, что влечет за собой больший расход теплоносителя, и, как следствие, больший расход электроэнергии и рост временного периода для достижения заданной температуры реакционной смеси.

Известен патент РФ RU 2348882 «Теплообменник Астановского радиально-спирального типа (варианты)». Теплообменник содержит вертикальный цилиндрический корпус с патрубками для подвода и отвода теплоносителей, внутри которого вокруг вертикальной оси установлены один над другим (вариант 1) или концентрично (вариант 2) два или более блоков теплообменных элементов с образованием распределительных коллекторов. Каждый теплообменный элемент состоит из двух снабженных дистанционирующими выступами стенок спиралеобразной формы, образующих внутренний канал для радиально-спирального потока одного из теплоносителей, а будучи собранными в блок, теплообменные элементы формируют вертикальные щелевые каналы для аксиального потока второго теплоносителя. Возможно также исполнение теплообменника для более чем двух теплоносителей. Направление потоков теплоносителей обеспечивается установленными внутри аппарата перегородками. Аппарат позволяет снизить гидравлические потери потоков теплоносителей.

Однако недостатками аппарата является то, что, для обеспечения постоянства температуры первого и второго теплоносителей необходимо проводить их нагрев в зарубашечном пространстве реактора, что требует, в свою очередь, увеличения расхода как теплоносителей, так и энергии для их нагрева.

Наиболее близким к изобретению является выбранный в качестве прототипа массообменный аппарат - «Реактор для проведения процессов в «кипящем» слое» (АС СССР SU 231525, опубл. 23.08.1972 г.). Реактор состоит из корпуса, выполненного из немагнитного материала и заполненного реакционной средой (ферромагнитные частицы) с нагревательным элементом и статора. Нагревательный элемент изготовлен из электропроводного материала в виде гильзы и расположен внутри корпуса реактора по его оси. Реактор обеспечивает повышенную эффективность работы за счет расположенного внутри аппарата (вдоль его оси) нагревательного элемента и выполненного в виде гильзы. К недостаткам аппарата можно отнести:

- небольшую поверхность теплообмена;

- высокую инерционность системы: ввиду того, что реакционная смесь поступает в аппарат при температуре, ниже заданной по технологии, увеличивается период ее нагревания. Выход на заданный температурный режим осуществляется с запаздыванием, что влечет за собой не только увеличение расхода энергии для нагрева, но и времени пребывания реакционной смеси в аппарате.

Задача, решаемая изобретением, состоит в снижении энергопотребления на нагревание теплоносителя и его расхода для поддержания заданной температуры в реакционной зоне аппарата.

Техническим результатом изобретения является повышение эффективности процесса теплообмена и снижение энергетических затрат на нагревание теплоносителя и его расхода за счет предварительного нагревания реакционной смеси непосредственно в самом аппарате перед подачей этой смеси в реакционную зону, увеличение поверхности теплообмена.

Технический результат достигается в массообменном аппарате, содержащем цилиндрический корпус с днищем, выполненным за одно целое с корпусом, съемную крышку со штуцерами подвода и отвода реакционной смеси, сдувки, дренажа, причем на внутренней поверхности цилиндрического корпуса по всей его высоте выполнена спиральная канавка, формирующая тепловую рубашку, соединенную со штуцером входа теплоносителя и штуцером выхода теплоносителя, а внутри цилиндрического корпуса с минимальным зазором установлен съемный цилиндрический стакан, заполненный неподвижным насыпным слоем, состоящий из внешней и внутренней обечаек, и перфорированного днища, при этом на внешней поверхности внутренней обечайки стакана выполнена спиральная канавка, формирующая спиралевидный канал, соединенный со штуцерами подвода и отвода реакционной смеси.

На фигурах 1 и 2 представлен общий вид аппарата в разрезе, где

1 - корпус, 2 - днище, 3 - крышка, 4 - тепловая рубашка, 5 -неподвижный насыпной слой, 6 - спиралевидный канал, 7 - штуцер вывода реакционной смеси из аппарата, 8 - штуцер ввода исходной реакционной смеси, 9 - штуцер сдувки из аппарата, 10 - штуцер входа теплоносителя в рубашку, 11 - штуцер выхода теплоносителя в рубашку. 12 - стакан; 13 - внешняя обечайка цилиндрического стакана, 14 - внутренняя обечайка цилиндрического стакана, 15 - штуцер дренажа.

Описание конкретного варианта выполнения массообменного аппарата

Массообменный аппарат состоит из цилиндрического корпуса 1 с плоским, например, приваренным, днищем 2 и съемной крышкой 3. Крышка оснащена штуцерами подвода 8 и вывода 7 реакционной смеси, штуцером сдувки 9, дренажа 15.

На внутренней поверхности корпуса аппарата 1 по всей его высоте выполнена спиральная канавка. Внутри корпуса 1 с минимальным зазором установлен съемный цилиндрический стакан 12 с двойной обечайкой: внешней 13 и внутренней 14, и перфорированным днищем, заполненный неподвижным насыпным слоем 5. На внешней поверхности внутренней обечайки14 стакана 12 выполнена спиральная канавка. Зазор между обечайками 13 и 14 формирует по всей высоте спиралевидный канал 6. Спиралевидный канал 6 сообщается со штуцером ввода 8 исходной реакционной смеси и служит для приема и пропускания исходной реакционной смеси. Между внешней обечайкой 13 цилиндрического стакана 12 и внутренней поверхностью корпуса 1 аппарата за счет спиральной канавки сформирован спиральный канал - тепловая рубашка 4, теплоноситель в которую подается в боковой штуцер 10, а выходит через штуцер 11 (штуцеры вварены в боковую поверхность корпуса аппарата 1).

Работа аппарата начинается с подачи теплоносителя в спиральный зазор между внешней обечайкой 13 цилиндрического стакана 12 и внутренней поверхностью корпуса 1 аппарата - тепловую рубашку 4 через штуцер 10, выход теплоносителя осуществляется через штуцер 11. Подаваемый в тепловую рубашку 4 теплоноситель нагревает поверхность обечайки 14.

Исходная реакционная смесь подается в верхнюю часть аппарата через штуцер 8, далее, поступая сверху вниз по спиралевидному каналу 6, постепенно нагревается и поступает в реакционную зону аппарата - неподвижный насыпной слой 5 в направлении снизу-вверх. После чего реакционная смесь выводится из аппарата через штуцер 7.

Такое конструктивное решение позволяет не только нагревать исходную реакционную смесь перед подачей в реакционную зону, но и создать более развитую поверхность теплообмена.

Таким образом, конструкция аппарата герметична, что является обязательным условием при работе с радиоактивными средами, обеспечивает возможность предварительного нагревания исходной реакционной смеси непосредственно в самом аппарате, что сокращает расход теплоносителя, энергии на его нагревание, временной период достижения заданной технологией температуры в рабочей зоне аппарата. В качестве исходной реакционной смеси могут выступать как жидкие, так и газовые фазы. Конструкция аппарата позволяет проводить его обслуживание в дистанционном режиме, например, при размещении в радиационно-защитной камере.

Похожие патенты RU2743760C1

название год авторы номер документа
Реактор 1988
  • Иванов Дмитрий Георгиевич
SU1581372A1
РЕАКТОР ПОЛИМЕРИЗАЦИИ 1994
  • Левин В.М.
RU2085281C1
Каталитический реактор 2018
  • Мнушкин Игорь Анатольевич
  • Самойлов Наум Александрович
  • Жилина Валерия Анатольевна
RU2674950C1
Конструкция реакционно-ректификационного аппарата периодического действия для осуществления термокаталитических процессов 2017
  • Леонтьева Альбина Ивановна
  • Балобаева Нина Николаевна
  • Орехов Владимир Святославович
  • Кхазаал Аль-Фадхли Хамид Кхазаал
RU2697465C2
РЕАКТОР 2006
  • Ардамаков Сергей Витальевич
  • Лукьянов Игорь Валентинович
  • Большаков Владимир Алексеевич
RU2330715C1
Реактор полимеризации для получения термопластичных высокочистых полимеров 2016
  • Еренков Олег Юрьевич
  • Чиркун Владлена Николаевна
  • Богачев Анатолий Петрович
  • Соловьева Дарья Александровна
RU2626365C1
КОЛОННЫЙ АППАРАТ ДЛЯ ДИСТИЛЛЯЦИИ МАСЛЯНЫХ МИСЦЕЛЛ 2021
  • Лисицын Александр Николаевич
  • Волков Сергей Михайлович
  • Федоров Александр Валентинович
  • Новоселов Александр Геннадьевич
  • Федоров Алексей Александрович
RU2809805C1
Способ отбора и подготовки газовых проб для поточного анализа и технологическая линия для его осуществления 2018
  • Фролов Денис Олегович
RU2692374C1
Биореактор для выращивания метанокисляющих микроорганизмов 2023
  • Неретин Денис Анатольевич
  • Теребнев Александр Владимирович
  • Хохлачев Николай Сергеевич
  • Червякова Ольга Петровна
  • Семенова Виктория Александровна
  • Сакаян Даниил Игоревич
  • Небогатов Алексей Юрьевич
RU2815237C1
ПРОТИВОТОЧНЫЙ СЕКЦИОНИРОВАННЫЙ ГАЗЛИФТНЫЙ РЕАКТОР ДЛЯ ГАЗОЖИДКОСТНЫХ ПРОЦЕССОВ 2003
  • Назимок Владимир Филиппович
  • Федяев Владимир Иванович
  • Назимок Екатерина Николаевна
  • Тарханов Геннадий Анатольевич
RU2268086C2

Иллюстрации к изобретению RU 2 743 760 C1

Реферат патента 2021 года Массообменный аппарат

Изобретение относится к аппаратам для проведения процессов взаимодействия неподвижной твердой фазы с жидкой или газовой фазами при повышенных температурах и может быть использовано для реализации процессов сорбции/адсорбции, каталитического окисления элементов в фармацевтической, химической, атомной и других отраслях промышленности, в частности, при работе с радиоактивными средами. Изобретение касается массообменного аппарата, содержащего корпус с днищем, выполненным за одно целое с корпусом, съемную крышку со штуцерами подвода и отвода реакционной смеси, сдувки, дренажа, причем на внутренней поверхности цилиндрического корпуса по всей его высоте выполнена спиральная канавка, формирующая тепловую рубашку, соединенную со штуцером входа теплоносителя и штуцером выхода теплоносителя, а внутри цилиндрического корпуса с минимальным зазором установлен съемный цилиндрический стакан, заполненный неподвижным насыпным слоем, состоящий из внешней и внутренней обечаек, и перфорированного днища. На внешней поверхности внутренней обечайки стакана выполнена спиральная канавка, формирующая спиралевидный канал, соединенный со штуцерами подвода и отвода реакционной смеси для подачи исходной реакционной смеси в верхнюю часть аппарата через штуцер подвода, нагрева ее во время прохождения сверху вниз по спиралевидному каналу и поступления в реакционную зону аппарата - неподвижный насыпной слой с в направлении снизу вверх с последующим выводом через штуцер отвода. Технический результат - повышение эффективности процесса теплообмена и снижение энергетических затрат на нагревание теплоносителя и его расхода, увеличение поверхности теплообмена. 2 ил.

Формула изобретения RU 2 743 760 C1

Массообменный аппарат, содержащий цилиндрический корпус с днищем, выполненным за одно целое с корпусом, съемную крышку со штуцерами подвода и отвода реакционной смеси, сдувки, дренажа, причем на внутренней поверхности цилиндрического корпуса по всей его высоте выполнена спиральная канавка, формирующая тепловую рубашку, соединенную со штуцером входа теплоносителя и штуцером выхода теплоносителя, а внутри цилиндрического корпуса с минимальным зазором установлен съемный цилиндрический стакан, заполненный неподвижным насыпным слоем, состоящий из внешней и внутренней обечаек, и перфорированного днища, при этом на внешней поверхности внутренней обечайки стакана выполнена спиральная канавка, формирующая спиралевидный канал, соединенный со штуцерами подвода и отвода реакционной смеси для подачи исходной реакционной смеси в верхнюю часть аппарата через штуцер подвода, нагрева ее во время прохождения сверху вниз по спиралевидному каналу и поступления в реакционную зону аппарата - неподвижный насыпной слой с в направлении снизу вверх с последующим выводом через штуцер отвода.

Документы, цитированные в отчете о поиске Патент 2021 года RU2743760C1

РЕАКТОР ДЛЯ ПРОВЕДЕНИЯ ПРОЦЕССОВ В «КИПЯЩЕМ» СЛОЕ 0
SU231525A1
Устройство для создания дозированного пересыщения пара веществ в потоке газа 1990
  • Коган Яков Ионович
  • Кателевский Вадим Яковлевич
SU1741105A1
АВТОМАТИЧЕСКИЙ БУЙКОВЫЙ УРОВИЕМЕР 0
  • И. С. Лидерман, Я. В. Рубинович С. А. Воеводский
SU164140A1
ТЕПЛООБМЕННИК АСТАНОВСКОГО РАДИАЛЬНО-СПИРАЛЬНОГО ТИПА (ВАРИАНТЫ) 2007
  • Астановский Дмитрий Львович
  • Астановский Лев Залманович
RU2348882C1
Реактор 1988
  • Лосик Виктор Иванович
  • Иванов Аркадий Герасимович
  • Шестова Галина Сергеевна
  • Голланд Александр Эммануилович
  • Рауш Эдвин Эдмундович
  • Фильченков Владимир Павлович
SU1627241A1
CN 103463829 A, 25.12.2013
US 5675974 A1, 14.10.1997.

RU 2 743 760 C1

Авторы

Науменко Николай Александрович

Никольский Егор Евгеньевич

Даты

2021-02-25Публикация

2020-05-12Подача