Область техники
Изобретение относится к нанотехнологии, в частности к процессам получения наночастиц, а именно к способу получения бор-кремнийсодержащих наночастиц.
Одним из направлений развития нанотехнологии является разработка эффективных способов получения наноматериалов и наночастиц, обладающих качественно новыми функциональными свойствами.
Борсодержащие соединения и их наноструктуры широко применяются для получения конструкционных композитных материалов, поверхностных покрытий.
В настоящее время борсодержащие соединения используются в биологии и медицине, в т.ч. при диагностике и терапии онкологических заболеваний. Перспективным является применение эффективных борсодержащих соединений, в том числе борсодержащих наночастиц, для бор-нейтронозахватной терапии (БНЗТ/BNCT) онкологических заболеваний.
Известно также, что кремнийсодержащие наночастицы обладают биосовместимостью, проникающей способностью и могут использоваться в качестве функциональных агентов лекарственных веществ. Установлено также, что наночастицы кремния имеют высокий квантовый выход люминесценции и могут применяться в медицине и биологии в качестве оптических меток при диагностике заболеваний.
Предшествующий уровень техники
Известен способ получения борсодержащих соединений на основе силицида бора методом плазмохимического синтеза, заключающийся в использовании газовых реагентов: трихлорида бора (BCl3), моносилана (SiH4), водорода (H2) при их концентрациях (моль %) соответственно: 10-40; 0,1-1,5; 55-90.
Процесс ведут при повышенной температуре (1000-1300°C). При реализации данного способа получают осаждаемые на поверхностях пленки силицида бора в виде монофиламентов с диаметром порядка 12-50 мкм (см. патент US №3607367 «High-strenght, hight-modulas, low density, boron silicide monofilaments, and method of making same», публ. 21.09.1971 г.).
Однако использование реагента - водорода - приводит к усложнению технологического процесса и аппаратного оснащения. Получаемые структуры силицида бора не являются наноразмерными, что ограничивает технологические возможности их использования в биологии и медицине.
Известен также способ получения частиц бора (B) и диборида титана (TiB2) методом лазерно-индуцированного пиролиза. Частицы бора и диборида титана были получены посредством индуцирования реакции пиролиза реакционной газовой смеси инфракрасным непрерывным излучением CO2-лазера (мощность 150 Вт, длина волны 10,591 мкм). Частицы бора (B) получены из реакционной газовой смеси трихлорида бора и водорода (BCl3+H2) или из диборана (B2H6). Частицы диборида титана (TiB2) получены из реакционной смеси газов (TiCl4+B2H6). Процесс осуществлялся в реакционной камере с использованием буферного газа - аргона (см. ст. - «Laser-induced vapour-phase syntheses of boron and titanium diboride powders», Journal of Materials Science, 1987, Volume 22, Number 2, pp.737-744).
Однако использование водорода и диборана в качестве реакционных газовых компонентов усложняет технологические процессы пиролиза и снижает безопасность их осуществления, что в целом ограничивает технологические возможности получения борсодержащих наночастиц.
Известны также технологические процессы получения наночастиц кремния и кремнийсодержащих наночастиц с использованием лазерно-индуцированного пиролиза, заключающиеся в индуцировании реакции пиролиза реакционной газовой смеси лазерным излучением (CO2-лазера) в проточном реакторе (см. ст. - «Synthesis of Luminescent Si Nanoparticles Using the Laser-Induced Pyrolysis», Laser Physics, 2011, Vol.21, No.4, pp.830-835; см. заявку US №2010/0147675 A1 «Synthesis of silicon nanocrystals by laser pyrolysis», публ. 17.06.2010 г.; см. заявку US №2004/0229447 A1 «Process for producing luminescent silicon nanoparticles», публ. 18.11.2004 г.).
В данных технических решениях получают наночастицы кремния и кремнийсодержащие наночастицы на основе применения метода лазерно-индуцированного пиролиза моносилана (SiH4).
Например, в техническом решении (заявка US №2004/0229447 A1) в качестве реакционной газовой смеси используется смесь (SiH4+SF6+H2), где гексафторид серы (SF6) и водород (H2) применяются соответственно в качестве фотосенсибилизатора и агента повышения температуры реакции, необходимой для синтеза наночастиц кремния.
Однако использование водорода и гексафторида серы в качестве реакционных газовых компонентов требует применения специального оборудования, усложняются технологические процессы пиролиза и снижается их безопасность.
В технологическом процессе, описанном в вышеуказанной статье - «Synthesis of Luminescent Si Nanoparticles Using the Laser-Induced Pyrolysis», Laser Physics, 2011, Vol.21, No.4, pp.830-835, которая выбрана в качестве ближайшего аналога изобретения, способ получения кремнийсодержащих наночастиц заключается в подаче в проточный реактор реакционной газовой смеси, содержащей моносилан (SiH4) с реагентом «B», и буферного газа, в индуцировании реакции пиролиза газовой смеси непрерывным излучением CO2-лазера при давлении газовой смеси в реакторе ниже атмосферного.
В качестве реагента «B» в данном техническом решении используют аммиак (NH4) или метан (CH4).
При осуществлении экзотермической реакции пиролиза газовой смеси используют буферный газ, в частности аргон (Ar).
Полученные наночастицы исследовались методами просвечивающей электронной микроскопии, динамического рассеяния света, дифракции электронов и ИК-спектроскопии.
Данные исследования показали, что наночастицы имеют композитную структуру с наличием связей Si-N и Si-C и узкую дисперсию по размерам.
Предложенный технологический процесс позволяет регулировать параметры синтеза наночастиц: плотность мощности излучения CO2-лазера в зоне реакции; давление в проточном реакторе; скорости потоков газовых реагентов, что дает возможность контролировать размеры частиц и степень дисперсности в узком диапазоне.
Однако указанный процесс представляет интерес, преимущественно, при создании кремниевых оптических маркеров. Полученные наночастицы не могут быть использованы для бор-нейтронозахватной терапии (БНЗТ/BNCT).
Известно, что в бор-нейтронозахватной терапии (БНЗТ/BNCT)) при диагностике и терапии различных онкологических заболеваний могут эффективно использоваться борсодержащие соединения и наночастицы (см. - заявку US №2005/0180917 A1 «Delivery of neutron capture elements for neutron capture therapy», публ. 18.08.2005 г, заявку WO 2005/094884 А2 «Boron containing nanoparticles targeted to T-cells», публ. 13.10.2005 г., статья «Бор-нейтронозахватная терапия рака. Химический аспект», Российский химический журнал, Российское химическое общество им. Д.И.Менделеева, 2004 г., т.XLVIII, №4, стр.109-125).
Как следует из приведенных источников информации, при бор-нейтронозахватной терапии (БНЗТ/BNCT) перспективным является применение соединений и препаратов, содержащих бор, позволяющих достигать необходимые концентрации бора в клетках опухоли организма для обеспечения терапевтического эффекта.
Например, в техническом решении (заявка US №2005/0180917 A1) в качестве борсодержащих наночастиц для бор-нейтронозахватной терапии предлагается использование наночастиц на основе соединения бор-кремний.
Данные соединения получают по многоэтапной процедуре с использованием золь-гель процесса, включающего гидролиз алкоксидов бора (B-(O-R)n) и алкоксидов кремния (Si-(O-R)n), получение оксидов бора и кремния, спекание продуктов реакции (золь-гель процесса) при температурах 100-1000°C, отгонку органических остатков, завершение гидролиза и реакции уплотнения продуктов.
Однако осуществляемый технологический процесс не позволяет контролировать размерность частиц и степень их дисперсности. Многоэтапный процесс связан с существенными затратами, в том числе в его части по очистке полученных продуктов от примесей химических реакций.
Таким образом, из приведенного анализа известного уровня техники в целом следует, что известные технологические процессы вследствие указанных выше их недостатков не обеспечивают получение композитных наночастиц на основе соединения бор-кремний с функциональными свойствами, необходимыми для бор-нейтронозахватной терапии (БНЗТ/BNCT).
Сущность изобретения
Технический результат изобретения состоял в расширении технологических возможностей метода лазерно-индуцированного пиролиза для получения бор-кремнийсодержащих наночастиц с повышенной концентрацией бора в них.
Для реализации технического результата предложен способ получения бор-кремнийсодержащих наночастиц, заключающийся в подаче в проточный реактор реакционной газовой смеси, содержащей моносилан (SiH4) с реагентом «B», и буферного газа, в индуцировании реакции пиролиза газовой смеси непрерывным излучением CO2-лазера при давлении газовой смеси в реакторе ниже атмосферного, при этом в качестве реагента «B» используют трихлорид бора (BCl3), процесс ведут при соотношении расходов газов: моносилан:реагент B:буферный газ как 1:(1,2-1,5):(45-55), при плотности мощности лазерного излучения 6000-8000 Вт/см2 и получают наночастицы с содержанием бора 55-65 (ат.%) и кремния остальное.
В настоящем изобретении реакцию осуществляют при давлении газовой смеси в реакторе 400-650 Торр.
В настоящем изобретении в качестве буферного газа используют гелий (He).
В настоящем изобретении получают бор-кремнийсодержащие наночастицы размером 5-30 нм.
При реализации настоящего изобретения при лазерно-индуцированном пиролизе реакционной смеси газов на основе соединения бора и соединения кремния получают бор-кремнийсодержащие наночастицы с повышенным содержанием бора.
При анализе известного уровня техники не выявлено технических решений с совокупностью признаков, соответствующих настоящему изобретению и обеспечивающих описанный выше результат.
Приведенный анализ известного уровня техники свидетельствует о соответствии заявляемого технического решения критериям изобретения «новизна», «изобретательский уровень».
Настоящее изобретение может быть реализовано при использовании оборудования и материалов, используемых в технологических процессах получения наночастиц.
Осуществление изобретения
Изобретение поясняется рисунками.
Рис.1 - принципиальная схема установки для получения бор-кремнийсодержащих наночастиц.
Рис.2 - изображения бор-кремнийсодержащих наночастиц (метод просвечивающей электронной микроскопии).
Рис.3 - рентгеновские фотоэлектронные спектры бора, содержащегося в наночастицах (метод рентгеновской фотоэлектронной спектроскопии).
Рис.4 - рентгеновские фотоэлектронные спектры кремния, содержащегося в наночастицах (метод рентгеновской фотоэлектронной спектроскопии).
Используемая для реализации изобретения установка для получения бор-кремнийсодержащих наночастиц (рис.1) содержит следующие приборы и оборудование:
CO2-лазерный излучатель 1 непрерывного действия ИЛГН-802, выходная мощность 70 Вт, длина волны λ=10,6 µ, диаметр луча в перетяжке 1 мм (ФГУП Научно-производственное предприятие «Исток», Россия); проточный реактор 2, имеющий реакционную кварцевую трубку с капилляром для подачи газовой смеси (Институт общей физики им. A.M.Прохорова РАН, Россия); система линз 3 из NaCl и ZnSe (Компания «Электростекло», Россия); панель газонапуска 4 с ротаметрами РМА-0,063 гуз и регуляторами расхода газа РРГ-12 (Компания «Ротаметр», Россия; Компания «Элточприбор», Россия); фильтрующий блок 5 со сменными фильтрующими ячейками для сбора наночастиц (Институт общей физики им. A.M.Прохорова РАН, Россия); баллон 6 с моносиланом - SiH4; баллон 7 с реагентом «В» (трихлорид бора - BCl3); баллон 8 с буферным газом (гелий - He); вакуумный насос 9.
Используемая для реализации изобретения исследовательская аппаратура:
просвечивающий электронный микроскоп (ТЕМ) «LEO912 АВ OMEGA» (Компания «Carl Zeiss», Германия); рентгеновский фотоэлектронный спектрометр «Quantera SXM» (Фирма «Physical Electronics» (ULVAC-PHI), США).
Используемые для реализации изобретения материалы:
- моносилан (тетрагидрид кремния, SiH4) (Каталог-справочник «Sigma-Aldrich», Россия, 2007-2008 гг., {7803-62-5}, стр.2176-2177);
- реагент «B» - трихлорид бора (BCl3) (Каталог-справочник «Sigma-Aldrich», Россия, 2007-2008 гг., {10294-34-5}, стр.429);
- буферный газ - гелий (He) (Каталог-справочник «Sigma-Aldrich», Россия, 2007-2008 гг., {7440-59-7}, стр.1358).
Способ получения бор-кремнийсодержащих наночастиц осуществляют следующим образом.
В проточный реактор 2 из баллона 6 с моносиланом и баллона 7 с реагентом «B» (трихлорид бора) через панель газонапуска 4 подается реакционная газовая смесь. В проточный реактор 2 через панель газонапуска 4 из баллона 8 подается буферный газ. Панель газонапуска 4 позволяет управлять расходом газовых реагентов и буферного газа за счет наличия в ее конструкции ротаметров и регуляторов расхода газов. Вакуумный насос 9 позволяет поддерживать необходимое давление в проточном реакторе 2.
Подача реакционной газовой смеси в реактор 2 осуществляется через капилляр в кварцевую трубку, в которой происходит реакция пиролиза, индуцированная (стимулированная) непрерывным излучением CO2-лазера 1, при давлении газовой смеси в реакторе ниже атмосферного. Внутри реактора 2 расположена также система подачи окружающего цилиндрического потока буферного газа для осуществления теплоотвода при экзотермической реакции пиролиза. В качестве буферного газа предпочтительно использование гелия (He). Реакция пиролиза происходит внутри кварцевой трубки для формирования реакционной струи и предотвращения осаждения получаемых наночастиц на стенках и оптических стеклах реактора 2.
Для фокусировки лазерного излучения используется система линз 3, обеспечивающая необходимый диаметр перетяжки излучения в реакционной зоне, с целью увеличения плотности мощности лазерного излучения. Диаметр перетяжки зависит от диаметра входящего лазерного излучения, величины фокусов линз и длины волны излучения.
Синтез бор-кремнийсодержащих наночастиц осуществляется в проточном реакторе 2 в струе реакционной смеси газов под воздействием излучения CO2-лазера, где происходит разложение молекул моносилана (SiH4) на активные преципитаты SiHx и разложение молекул трихлорида бора (BCl3) с образованием связей бор-кремний (B-Si).
Сбор образуемых наночастиц производится в фильтрующем блоке 5 в атмосфере буферного газа.
При реализации изобретения процесс ведут при соотношении расходов газов: моносилан (SiH4): реагент «В» (трихлорид бора-BCl3): буферный газ, как 1:(1,2-1,5):(45-55).
Заданное соотношение расходов оптимально, при изменении указанного соотношения дестабилизируется процесс пиролиза по получению бор-кремнийсодержащих наночастиц требуемой размерности и с необходимым содержанием бора.
При осуществлении процесса плотность мощности лазерного излучения в зоне реакции составляет 6000-8000 Вт/см2, что оптимально.
Изменение данного режима приводит к нарушению температурного режима процесса, увеличению расхода реагентов, усложнению аппаратного обеспечения, к ухудшению процесса образования наночастиц с требуемыми функциональными свойствами для бор-нейтронозахватной терапии (БНЗТ/BNCT).
Заданное по изобретению давление газовой смеси в реакторе 400-650 торр оптимально для осуществления процесса пиролиза газовой смеси. Изменение данного режима приводит к изменению расхода реагентов, нарушению температурного режима процесса, усложнению аппаратного обеспечения, снижению эффективности образования наночастиц.
Бор-кремнийсодержащие наночастицы по изобретению получены на установке (рис.1).
Для реализации процесса использовали следующие режимы:
- лазерное излучение непрерывного действия (CO2-лазер), выходная мощность лазера 70 Вт, длина волны λ=10,6 µ, диаметр луча в перетяжке 1,0 мм, плотность мощности лазерного излучения в зоне реакции 7000 Вт/см2;
- расход моносилана (тетрагидрид кремния - SiH4) 1,6 л/час, расход реагента «B» (трихлорид бора - BCl3) 2,2 л/час, расход буферного газа (гелий - He) 80 л/час;
- давление газовой смеси в проточном реакторе 600 Торр.
При указанных режимах и параметрах производительность процесса (выход наночастиц) составила 650 мг/час наночастиц, получены бор-кремнийсодержащие наночастицы размером 5-30 нм.
Размеры полученных наночастиц определялись методом просвечивающей электронной микроскопии на электронном микроскопе ТЕМ «LEO912 AB OMEGA».
Изображения бор-кремнийсодержащих наночастиц (метод просвечивающей электронной микроскопии) приведены на рис.2.
Для исследования качественного состава полученных наночастиц использовался метод рентгеновской фотоэлектронной спектроскопии на спектрометре «Quantera SXM» с применением монохроматизированного рентгеновского источника AlKα (1486,61 эВ) и полусферического анализатора энергий электронов.
Рентгеновские фотоэлектронные спектры кремния и бора, содержащиеся в полученных наночастицах, исследовались в трех областях (1, 2, 3) специальной подложки (8×8 мм) с нанесенным слоем наночастиц. Анализируемый размер каждой области составлял 100 мкм.
Обзорные фотоэлектронные спектры для наночастиц были получены при энергии пропускания анализатора, равной 280 эВ. Фотоэлектронные спектры бора (уровень B1s) и кремния (уровень Si2s), которые использовались для расчета их атомных концентраций (ат.%) в наночастицах, были получены при энергии пропускания анализатора, равной 55 эВ.
Для расчета атомных концентраций кремния и бора, содержащихся в наночастицах, определялись площади спектров (интегральные интенсивности спектров) уровней B1s и Si2s с использованием программного обеспечения спектрометра, которое учитывает факторы элементной чувствительности и геометрию съемки.
Рентгеновские фотоэлектронные спектры бора и кремния, содержащиеся в наночастицах, приведены на рис.3 и рис.4. На рисунках представлены спектральные линии для трех исследованных областей (1, 2, 3), отражающие зависимости интенсивности фотоэлектронов (импульс/сек) от энергии связи электронов (эВ) во внутренних оболочках атомов, образующих молекулы кремния и бора.
В результате расчета установлено следующее содержание (ат.%) бора и кремния в наночастицах, определенных по линиям B1s и Si2s, для исследованных областей (1, 2, 3):
Область 1: Бор (B) - 60,38; кремний (Si) - 39,62;
Область 2: Бор (B) - 61,32; кремний (Si) - 38,68;
Область 3: Бор (B) - 61,14; кремний (Si) - 38,86.
Таким образом, при реализации настоящего изобретения при лазерно-индуцированном пиролизе реакционной смеси газов - моносилана и трихлорида бора - получают бор-кремнийсодержащие наночастицы размером 5-30 нм с повышенным содержанием бора - более 60 ат.%.
Учитывая приведенные выше источники информации о перспективах бор-нейтронозахватной терапии, можно прогнозировать, что разработанный способ получения бор-кремнийсодержащих наночастиц, с указанной размерностью и повышенным содержанием бора, представит практический интерес при создании препаратов для терапии различных онкологических заболеваний.
название | год | авторы | номер документа |
---|---|---|---|
Способ формирования планарных структур методом атомно-силовой литографии | 2017 |
|
RU2659103C1 |
БИОПОЛИМЕРНЫЙ МАТРИКС ДЛЯ ПРОЛИФЕРАЦИИ КЛЕТОК И РЕГЕНЕРАЦИИ НЕРВНЫХ ТКАНЕЙ | 2011 |
|
RU2478398C1 |
СОСТАВ, ИМИТИРУЮЩИЙ ВНУТРИСУСТАВНУЮ ЖИДКОСТЬ, И СПОСОБ ПОЛУЧЕНИЯ ДОБАВКИ К НЕЙ | 2011 |
|
RU2473352C2 |
Кремнийсодержащий активный материал для отрицательного электрода и способ его получения | 2019 |
|
RU2744449C1 |
Способ получения нанодисперсного изотопно-модифицированного борида молибдена | 2023 |
|
RU2811828C1 |
СПОСОБ ПОЛУЧЕНИЯ НАНОРАЗМЕРНЫХ СТРУКТУР КРЕМНИЯ | 2013 |
|
RU2547016C2 |
СПОСОБ ПОЛУЧЕНИЯ КОМПОЗИЦИИ ДЛЯ БОР-НЕЙТРОНОЗАХВАТНОЙ ТЕРАПИИ ЗЛОКАЧЕСТВЕННЫХ ОПУХОЛЕЙ (ВАРИАНТЫ) | 2019 |
|
RU2720458C1 |
Способ получения биологически активной фармацевтической субстанции для питания внеклеточного матрикса и профилактики заболеваний опорно-двигательного аппарата и барьерных функций органов дыхания и пищеварения | 2019 |
|
RU2730477C1 |
СПОСОБ ПОЛУЧЕНИЯ ВЕЩЕСТВА, ВЫБРАННОГО ИЗ РЯДА ТУГОПЛАВКИХ МЕТАЛЛОВ ИЛИ РЯДА НЕМЕТАЛЛОВ: КРЕМНИЙ, БОР, ФОСФОР, МЫШЬЯК, СЕРА | 2005 |
|
RU2298588C2 |
СПОСОБ ИЗМЕРЕНИЯ ПОГЛОЩЕННОЙ ДОЗЫ ПРИ БОР-НЕЙТРОНОЗАХВАТНОЙ ТЕРАПИИ ЗЛОКАЧЕСТВЕННЫХ ОПУХОЛЕЙ | 2015 |
|
RU2606337C1 |
Изобретение относится к нанотехнологии, в частности к способу получения бор-кремнийсодержащих наночастиц, и может быть использовано в медицине. Способ получения бор-кремнийсодержащих наночастиц включает подачу в проточный реактор реакционной газовой смеси, содержащей моносилан (SiH4) с реагентом «B», и буферного газа, индуцирование реакции пиролиза газовой смеси непрерывным излучением CO2-лазера при давлении газовой смеси в реакторе ниже атмосферного. В качестве реагента «B» используют трихлорид бора (BCl3), процесс ведут при соотношении расходов газов: моносилан:реагент В:буферный газ как 1:(1,2-1,5):(45-55), при плотности мощности лазерного излучения 6000-8000 Вт/см2. Получают наночастицы с содержанием бора 55-65 ат.% и кремния остальное. Наночастицы характеризуются повышенным содержанием бора. 3 з.п. ф-лы, 4 ил.
1. Способ получения бор-кремнийсодержащих наночастиц, включающий подачу в проточный реактор реакционной газовой смеси, содержащей моносилан (SiH4) с реагентом «B», и буферного газа, индуцирование реакции пиролиза газовой смеси непрерывным излучением CO2-лазера при давлении газовой смеси в реакторе ниже атмосферного, при этом в качестве реагента «B» используют трихлорид бора (BCl3), процесс ведут при соотношении расходов газов: моносилан: реагент B: буферный газ, как 1:(1,2-1,5):(45-55), при плотности мощности лазерного излучения 6000-8000 Вт/см2 и получают наночастицы с содержанием бора 55-65 ат.% и кремния - остальное.
2. Способ по п.1, отличающийся тем, что реакцию осуществляют при давлении газовой смеси в реакторе 400-650 Торр.
3. Способ по п.1, отличающийся тем, что в качестве буферного газа используют гелий (He).
4. Способ по п.1, отличающийся тем, что получают бор-кремнийсодержащие наночастицы размером 5-30 нм.
БЕКЛЕМЫШЕВ В.И | |||
и др | |||
Получение содержащих бор-кремний наночастиц | |||
Наноиндустрия научно-технический журнал, 2011, т.29, вып.5, с.44-45 | |||
VLADIMIROV A | |||
et al | |||
Synthesis of Luminiscent Si Nanoparticales Using the Laser - Induced Pyrolysis, Laser Physics, 2011, Vol.21, №4, pp.830-835 | |||
VIRENDA K.PARASHAR еt al | |||
Borosilicate nanoparticles prepared |
Авторы
Даты
2012-09-10—Публикация
2011-06-21—Подача