БЕТОННАЯ МАССА Российский патент 2012 года по МПК C04B35/66 C04B28/06 C04B111/20 

Описание патента на изобретение RU2462435C1

Изобретение относится к составу бетононной массы для изготовления без обжиговых и обжиговых огнеупорных изделий, выполнения монолитных футеровок, высокотемпературных агрегатов в металлургии и других отраслях промышленности.

Известны карбидкремниевые бетонные массы и изделия из нее: патент US 5,214,006, C04B 35/56 1993 г.; RU 2257361 C1, C04B 35/56, 2004 г.; RU 2055054, C04B 35/66 1996 г.

Бетонная масса (US 5,214,006, кл. C04B 35/56 1993) содержит, мас.%: карбид кремния 87%; щелочные фосфаты 5%; глинозем 5%; микрокремнезем 3%. Недостатком бетонной массы является повышенное содержание воды затворителя - 6,5 мас.%, и как следствие, высокие значения открытой пористости более 20%, присутствие щелочей, которые отрицательно влияют на устойчивость к действию расплава шлака, криолита.

Известна огнеупорная бетонная масса (RU 2055054, кл. C04B 35/66 1996), содержащая, мас.%: бой карбидкремниевых изделий фарфорового производства с содержанием карбида кремния 45-60% (основа); высокоглиноземистый цемент 4-8%; корундовую пыль глиноземного производства 5-10%; огнеупорную глину 10-20%; водную суспензию тонкомолотого корунда 4-10%; лигносульфонат технический 1-2%. Недостатком состава такой бетонной массы является использование в составе боя карбидкремниевых изделий фарфорового производства с большим количеством примесных компонентов, приводящих к образованию жидкой фазы. Присутствие огнеупорной глины в больших количествах снижает огнеупорность, что приводит к снижению свойств изделий из нее: огнеупорности, коррозионной и эрозионной стойкости, потеря прочности выше 1400°C.

Наиболее близким аналогом к заявляемому изобретению является карбидкремниевая бетонная масса патент RU 2257361 C1, C04B 35/56, 2004 г. Состав массы представлен, мас.%: пластификатор 0,3-0,5; микрокремнезем 2,0-5,0; высокоглиноземистый цемент 7,0-10,0 и карбид кремния остальное. Бетон дополнительно содержит высокоглиноземистый компонент в виде пыли с электрофильтров печей кальцинации глиноземного производства или в виде электрокорунда 5-15 мас.%. Недостатком бетонной массы является присутствие в составе большого количества высокоглиноземистого цемента. Для придания подвижности такой массы необходимо повышенное содержание воды, что приводит к увеличению пористости, уменьшению механической прочности. Изделия из такой бетонной массы характеризуются пониженной плотностью, высокой пористостью, низкой механической прочностью, высокой окисляемостью. Кроме того, повышенная пористость снижает устойчивость бетона к коррозии расплавами шлаков.

Задачей предлагаемого технического решения является разработка бетонной массы для получения из нее бетонных изделий с пониженной открытой пористостью, с повышенной механической прочностью, повышенной плотностью, с высокой температурой начала деформации под нагрузкой и устранения разупрочнения при термоциклировании.

Технический эффект состоит в повышении свойств изделий из бетонной массы: плотности свыше 2.67 г/мм3; в повышении термостойкости свыше 30 теплосмен (1000°C - вода); в устранении разупрочнения при термоциклировании; в снижении открытой пористости до 13,3%; повышении механической прочности до 150 МПа; исключении разупрочнения в интервале 600-1000°C; в повышении стойкости к окислению; кроме того повышается устойчивость к действию расплава доменного шлака и криолита.

Повышение физико-технических свойств достигается за счет того, что бетонная масса дополнительно содержит карбид кремния фракции меньше 63 мкм, а высокоглиноземистый компонент представлен реактивным и активным глиноземом соответственно, при следующем соотношении компонентов, мас.%:

Карбид кремния меньше 63 мкм 8,8-13,0 Реактивный глинозем 10,0-13,0 Активный глинозем 0,1-6,0 Высокоглиноземистый цемент 0,1-6,0 Микрокремнезем 3,8-6,0 Пластификатор 0,5-1,0 Карбид кремния фракции 630-1600 мкм остальное Вода, сверх 100% 4,5-5,5

Введение микрокремнезема в матрицу бетонов улучшает текучесть и снижает водопотребность массы. Микрокремнезем при взаимодействии с CaO высокоглиноземистого цемента по реакции Ca(OH)2+SiO2=CaO·SiO2·H2O образует гелеобразные продукты, заполняющие поры в бетоне. Введение микрокремнезема исключает разупрочнение образцов бетона в интервале 600-1100°C. При введении менее 3,8 мас.% микрокремнезема в массу происходит снижение подвижности массы, а при введении более 6,0 мас.% увеличивается срок затвердевания массы.

Введение реактивного глинозема позволяет исключить дилатансию реологического поведения бетонов, а также способствует повышению прочности, снижению окисляемости и повышению термомеханических свойств изделий. При высоких температурах реактивный глинозем реагирует с микрокремнеземом, образует вторичный муллит в форме игл, которые армируют структуру изделий. Муллит образует высокотемпературную минеральную связку и обеспечивает повышение прочности изделий, а также способствует повышению термостойкости. При введении менее 10 мас.% реактивного глинозема происходит уменьшение механической прочности, а увеличение содержания реактивного глинозема более 13,0 мас.% приводит к уменьшению механической прочности.

Введение активного глинозема обеспечивает при реакции с водой гелеобразование алюмогидратов, улучшающих подвижность массы, которые при нагревании выше 1000°C образуют кристаллы α-Al2O3, формирующие затем минеральную связку. При введении активного глинозема менее 1,5 мас.% ухудшается химическая стойкость к расплаву шлака и криолита, а при введении активного глинозема более 6 мас.% увеличивается открытая пористость, уменьшается механическая прочность.

Введение высокоглиноземистого цемента влияет на технологичность смесей, связанную с водопотребностью, жизнеспособностью, временем схватывания, характером набора прочности. При введении высокоглиноземистого цемента менее 1,5 мас.% происходит уменьшение механической прочности, а при введении высокоглиноземистого цемента более 6,0 мас.% уменьшается химическая стойкость к расплаву шлака и криолита.

Введение карбида кремния фракции меньше 63 мкм способствует увеличению плотности упаковки, уменьшению пористости, увеличению прочности и образованию мелкопористой структуры. При введении карбида кремния фракции меньше 63 мкм менее 8,8 мас.% увеличивается пористость и уменьшается механическая прочность, а при введении карбида кремния фракции меньше 63 мкм более 13 мас.% происходит увеличение открытой пористости.

При разработке бетонной массы использовали карбид кремния фракции 630-1600 мкм производства ОАО «Волжский абразивный завод» ГОСТ 26327-84, карбид кремния меньше 63 мкм производства ОАО «Волжский абразивный завод» ГОСТ 26327-84, микрокремнезем марки МК 85, высокоглиноземистый цемент марки ВГЦ-II, CEMBOR-73, пластификатор триполифосфат натрия и лимонную кислоту, реактивный глинозем марки СТС 22 и СТС 20, активный глинозем из числа растворимых форм типа «Альфабонд» марок 300, 500, гидрооксидные формы алюминия по ТУ 1711-99-039-2000.

Физико-технические свойства определяли по стандартным методам:

Кажущаяся плотность, открытая пористость по ГОСТ 2409-95.

Предел прочности при сжатии по ГОСТ Р 5306.2-2008.

Температура начала деформации в воздушной атмосфере по ISO 1893-1989.

Термическая стойкость по ГОСТ 7875.2-94.

Окисляемость определяли по привесу карбида кремния на термообработанных в окислительной атмосфере образцах при Т=1550°C с выдержкой 2 часа.

Коррозионную устойчивость определяли тигельным методом к расплаву доменного шлака при T=1500°C выдержка 1 час, к расплаву криолита при Т=1000°C выдержка 1 час.

В таблице 1 приведены составы заявляемой бетонной массы, в таблице 2 приведены физико-технические свойства бетонной массы после сушки при Т=125°C, в таблице 3 приведены физико-технические свойства бетонной массы после обжига в среде N2 при Т=1300°C.

Примеры реализации бетонной массы:

Пример 1. Для получения бетонной массы к 76,7 мас.% карбида кремния фракции 630-1600 мкм ГОСТ 26327-84 добавляли карбид кремния фракции меньше 63 мкм ГОСТ 26327-84 8,8 мас.%, микрокремнезем МК 85 3,8 мас.%, реактивный глинозем СТС 22 10,0 мас.%, активный глинозем «Альфабонд 300» 0,1 мас%, высокоглиноземистый цемент CEMBOR-73 0,1 мас.%, пластификатор 0,5 мас.% триполифосфат натрия и лимонная кислота (в соотношении 1:1) - сухую смесь смешивали в роторной мешалке 4 мин. В подготовленную смесь вводили воду затворения 4,5 мас.% сверх 100%, после чего увлажненную массу перемешивали в течение 3 мин. Образцы формовали на вибростоле без пригруза. Отформованные образцы выдерживали в металлической форме при комнатной температуре в течение 3 часов. Сушку образцов проводили при Т=125°C, выдержка 1 час. Обжиг образцов производили в печи в среде N2 при Т=1300°C, выдержка 1 час (таблица 1, состав №1; таблица 3, свойства - состав №1).

Пример 2. Для получения бетонной массы к 66,7 мас.% карбида кремния фракции 630-1600мкм ГОСТ 26327-84 добавляли карбид кремния фракции меньше 63 мкм ГОСТ 26327-84 8,8 мас.%, микрокремнезем МК 85 5,4 мас.%, реактивный глинозем СТС 22 12,0 мас.%, активный глинозем «Альфабонд 300» 6,0 мас%, высокоглиноземистый цемент CEMBOR-73 0,1 мас.%, пластификатор 1,0 мас.% триполифосфат натрия и лимонная кислота (в соотношении 1:1) - сухую смесь смешивали в роторной мешалке 4 мин. В подготовленную смесь вводили воду затворения 5,0 мас.% сверх 100%, после чего увлажненную массу перемешивали в течение 3 мин. Образцы формовали на вибростоле без пригруза. Отформованные образцы выдерживали в металлической форме при комнатной температуре в течение 3 часов. Сушку образцов проводили при Т=125°C, выдержка 1 час. Обжиг образцов производили в печи в среде N2 при Т=1300°C, выдержка 1 час (таблица 1, состав №3; таблица 3, свойства - состав №3).

Пример 3. Для получения бетонной массы к 66,9 мас.% карбида кремния фракции 630-1600 мкм ГОСТ 26327-84 добавляли карбид кремния фракции меньше 63 мкм ГОСТ 26327-84 10,0 мас.%, микрокремнезем МК 85 5,0 мас.%, реактивный глинозем СТС 22 12,0 мас.%; активный глинозем «Альфабонд 300» 0,1 мас%, высокоглиноземистый цемент CEMBOR-73 5,0 мас.%, пластификатор 1,0 мас.% триполифосфат натрия и лимонная кислота (в соотношении 1:1) - сухую смесь смешивали в роторной мешалке 4 мин. В подготовленную смесь вводили воду затворения 5,0 мас.% сверх 100%, после чего увлажненную массу перемешивали в течение 3 мин. Образцы формовали на вибростоле без пригруза. Отформованные образцы выдерживали в металлической форме при комнатной температуре в течение 3 часов. Сушку образцов проводили при Т=125°C, выдержка 1 час. Обжиг образцов производили в печи в среде N2 при Т=1300°C, выдержка 1 час (таблица 1, состав №5; таблица 3, свойства - состав №5).

Пример 4. Для получения бетонной массы к 67,4 мас.% карбида кремния фракции 630-1600 мкм ГОСТ 26327-84 добавляли карбид кремния фракции меньше 63 мкм ГОСТ 26327-84 10,6 мас.%, микрокремнезем МК 85 5,4 мас.%, реактивный глинозем СТС 22 12,0 мас.%, активный глинозем «Альфабонд 300» 0,1 мас%, высокоглиноземистый цемент CEMBOR-73 4,0 мас.%, пластификатор 0,5 мас.% триполифосфат натрия и лимонная кислота (в соотношении 1:1) - сухую смесь смешивали в роторной мешалке 4 мин. В подготовленную смесь вводили воду затворения 5,0 мас.% сверх 100%, после чего увлажненную массу перемешивали в течение 3 мин. Образцы формовали на вибростоле без пригруза. Отформованные образцы выдерживали в металлической форме при комнатной температуре в течение 3 часов. Сушку образцов проводили при Т=125°C, выдержка 1 час. Обжиг образцов производили в печи в среде N2 при Т=1300°C, выдержка 1 час (таблица 1, состав №7; таблица 3, свойства - состав №7).

Пример 5. Для получения бетонной массы к 55,0 мас.% карбида кремния фракции 630-1600 мкм ГОСТ 26327-84 добавляли карбид кремния фракции меньше 63 мкм ГОСТ 26327-84 13,0 мас.%, микрокремнезем МК 85 6,0 мас.%, реактивный глинозем СТС 22 13,0 мас.%, активный глинозем "Альфабонд 300" 6,0 мас.%, высокоглинозёмистый цемент CEMBOR-73 6,0 мас.%, пластификатор 1,0 мас.% триполифосфат натрия и лимонная кислота (в соотношении 1:1) - сухую смесь смешивали в роторной мешалке 4 мин. В подготовленную смесь вводили воду затворения 5,5 мас.% сверх 100%, после чего увлажненную массу перемешивали в течение 3 мин. Образцы формовали на вибростоле без пригруза. Отформованные образцы выдерживали в металлической форме при комнатной температуре в течение 3 часов. Сушку образцов проводили при Т=125°C, выдержка 1 час. Обжиг образцов производили в печи в среде N2 при Т=1300°C, выдержка 1 час (таблица 1, состав №10; таблица 3, свойства - состав №10).

Составы бетонных масс №2, №4, №6, №8, №9 (таблица 1) приготавливали аналогично примерам 1-5.

Таблица 1 Состав бетонной массы Компонент Заявляемая бетонная масса Составы но прототипу, пат. RU 2257361 мас.% мас.% №1 №2 №3 №4 №5 №6 №7 №8 №9 №10 №1 №2 №3 Микрокремнезем МК85 3,8 3,8 5,4 5,4 5,0 5,4 5,4 4,4 5,4 6,0 3,0 3,0 3,0 Реактивный глинозем СТС 22 10,0 12,0* 12,0 11,0 12,0 12,0* 12,0 10,5* 12,0 13,0 - - - Активный глинозем «Альфабонд 300» 0,1 0,1 6,0 1,5** 0,1 4,0** 0,1 1,5 0,1 6,0 - - - ВГЦ CEMBOR-73 0,1 5,0 0,1 2,5 5,0 0,1 4,0 5,0 6,0 6,0 8,0 8,0 8,0 SiC меньше 63 мкм 8,8 10,0 8,8 10,6 10,0 10,6 10,6 11,8 10,6 13,0 - - - Электрокорунд - - - - - - - - - - - 15,0 - Пыль с эл. фильтров печей кальцинации глинозема - - - - - - - - - - - - 15 Пластификатор триполифосфат натрия и лимонная кислота (соотношение 1:1) 0,5 0,5 1,0 0,5 1,0 1,0 0,5 0,5 0,5 1,0 0,5 SiC фp. 630-1600 мкм 76,7 68,6 66,7 68,5 66,9 66,9 67,4 66,3 65,4 55,0 88,5 73,5 73,5 Вода, сверх 100% 4,5 4,9 5,0 4,8 5,0 5,2 5,0 5,1 5,2 5,5 7,0-9,0 * - СТС 20; ** - «Альфабонд 500».

Таблица 2 Физико-технические свойства образцов после сушки при Т=125°C Пример Потк, % ρкаж, г/см3 σсж, МПа №4 14,3 2,67 51,6 №6 13,8 2,65 41,2 №8 13,7 2,75 53,4

Таблица 3 Физико-технические свойства образцов после обжига, 1300°C Свойства заявляемого материала Свойства прототипа, пат. RU 2257361 Свойства Пример Пример №1 №2 №3 №4 №5 №6 №7 №8 №9 №10 №1 №2 №3 Тобж, °C 1300 1300 Потк, % 16,2 13,4 15,4 15,4 14,3 15,4 14,1 13,3 13,9 14,8 17 17,1 16,5 ρкаж, г/см3 2,67 2,71 2,69 2,68 2,69 2,68 2,69 2,76 2,69 2,70 2,55 2,64 2,58 σсж, МПа 85 150 115 100 128 90 122 122 133 96 75,1 84,8 95,3 σсж после 30 теплосмен, МПа 80 149 108 86 122 87 116 115 130 91 - - - Термостойкость, 1000°C - вода св. 30 св. 30 св. 30 св. 30 св. 30 св. 30 св. 30 св. 30 св. 30 св. 30 - - - Температура начала деформации под нагрузкой, 0,5/1,0% 1520/1600 1540/1620 1580/1650 1560/1630 1540/1620 1580/1650 1540/1620 1555/1630 1540/ 1610 1530/ 1605 - - - Окисление SiC, отн. % * 2,8 1,2 2,6 2,5 1,7 2,2 1,6 1,1 - 2,1 3,2 - - Устойчивость к доменному шлаку (основность 1,10), площадь пропитки, мм2 - - - - - 119 - - 574 - - - - Устойчивость к расплаву криолита (КО=2,55), площадь пропитки, мм2 - - - - - 181 - - 206 - - - - * Значения окисления SiC приведены для заявляемого материала после нагрева при 1550°C, а для прототипа после нагрева при 1300°С.

Таким образом, бетонные изделия из заявляемой бетонной массы обладают высокими показателями физико-технических свойств: плотности, механической прочности, низкими значениями открытой пористости, отсутствием разупрочнения при термоциклировании, низкой окисляемостью и высокой устойчивостью при воздействии расплава доменного шлака и криолита.

Похожие патенты RU2462435C1

название год авторы номер документа
ОГНЕУПОРНАЯ БЕСЦЕМЕНТНАЯ БЕТОННАЯ МАССА 2013
  • Суворов Станислав Алексеевич
  • Застрожнов Максим Николаевич
RU2546692C2
КАРБИДКРЕМНИЕВЫЙ БЕТОН 2004
  • Каменских В.А.
  • Кащеев И.Д.
  • Гуляев А.А.
RU2257361C1
Сырьевая смесь для жаростойкого теплоизоляционного торкрет-бетона 2018
  • Богусевич Дмитрий Владимирович
  • Ахмедьянов Ренат Магафурович
  • Трофимов Борис Яковлевич
RU2674484C1
ОГНЕУПОРНАЯ БЕТОННАЯ СМЕСЬ (ВАРИАНТЫ) 2011
  • Замятин Степан Романович
  • Гельфенбейн Владимир Евгеньевич
  • Журавлев Юрий Леонидович
  • Бабакова Оксана Львовна
RU2437862C1
ОГНЕУПОРНАЯ БЕТОННАЯ СМЕСЬ 2006
  • Дунаева Марина Николаевна
  • Гришпун Ефим Моисеевич
  • Гороховский Александр Михайлович
RU2331617C2
ОГНЕУПОРНАЯ БЕТОННАЯ КОМПОЗИЦИЯ 2014
  • Аксельрод Лев Моисеевич
  • Лаптев Александр Павлович
  • Донич Римма Абрамовна
RU2550626C1
ОГНЕУПОРНАЯ БЕТОННАЯ СМЕСЬ 2006
  • Можжерин Владимир Анатольевич
  • Сакулин Вячеслав Яковлевич
  • Мигаль Виктор Павлович
  • Новиков Александр Николаевич
  • Салагина Галина Николаевна
  • Штерн Евгений Аркадьевич
  • Маргишвили Алла Петровна
  • Громова Лариса Юрьевна
  • Русакова Галина Владимировна
  • Алексеев Павел Евгеньевич
  • Гвоздева Ирина Александровна
  • Степанова Лариса Васильевна
RU2320617C2
ОГНЕУПОРНАЯ БЕТОННАЯ СМЕСЬ 2018
  • Воробьев Андрей Павлович
  • Гилев Руслан Владимирович
  • Говоров Всеволод Вячеславович
  • Бойцов Николай Николаевич
  • Половцева Елена Васильевна
RU2698390C1
ОГНЕУПОРНАЯ БЕТОННАЯ СМЕСЬ 2009
  • Дунаева Марина Николаевна
  • Гришпун Ефим Моисеевич
  • Гороховский Александр Михайлович
RU2410361C1
ОГНЕУПОРНАЯ БЕТОННАЯ СМЕСЬ (ВАРИАНТЫ) 2003
  • Аскинази Ю.В.
  • Бойкова А.А.
  • Гончаров Э.В.
  • Гудин С.Н.
  • Звягин К.А.
  • Козловский А.Г.
RU2239612C1

Реферат патента 2012 года БЕТОННАЯ МАССА

Изобретение относится к составу бетонной массы для изготовления безобжиговых и обжиговых огнеупорных изделий, выполнения монолитных футеровок, высокотемпературных агрегатов в металлургии и других отраслях, промышленности. Бетонная масса содержит, мас.%: реактивный глинозем - 10,0-13,0; активный глинозем - 0,1-6,0; высокоглиноземистый цемент - 0,1-6,0; микрокремнезем - 3,8-6,0; карбид кремния фракции меньше 63 мкм - 8,8-13,0; пластификатор - 0,5-1,0, карбид кремния фракции 630-1600 мкм остальное, вода затворения - 4,5-5,5 сверх 100%. Технический результат состоит в повышении плотности бетона, термостойкости, уменьшении открытой пористости, повышении механической прочности, исключении разупрочнения в интервале 600-1000°C, устранении разупрочнения при термоциклировании, а также в повышении химической устойчивости к воздействию расплава доменного шлака и криолита и стойкости к окислению. 3 табл., 10 пр.

Формула изобретения RU 2 462 435 C1

Бетонная масса, включающая карбид кремния фракции 630-1600 мкм, микрокремнезем, высокоглиноземистый цемент, высокоглиноземистый компонент, пластификатор и воду затворения, отличающаяся тем, что дополнительно содержит карбид кремния фракции меньше 63 мкм, а высокоглиноземистый компонент представлен реактивным и активным глиноземом при следующем соотношении компонентов, мас.%:
Карбид кремния фракции меньше 63 мкм 8,8-13,0 Реактивный глинозем 10,0-13,0 Активный глинозем 0,1-6,0 Высокоглиноземистый цемент 0,1-6,0 Микрокремнезем 3,8-6,0 Пластификатор - триполифосфат натрия и лимонная кислота в соотношении 1:1 0,5-1,0 Карбид кремния фракции 630-1600 мкм остальное Вода, сверх 100% 4,5-5,5

Документы, цитированные в отчете о поиске Патент 2012 года RU2462435C1

КАРБИДКРЕМНИЕВЫЙ БЕТОН 2004
  • Каменских В.А.
  • Кащеев И.Д.
  • Гуляев А.А.
RU2257361C1
СПОСОБ ИЗГОТОВЛЕНИЯ ИЗДЕЛИЙ ИЗ ОГНЕУПОРНОЙ МАССЫ (ВАРИАНТЫ) 2007
  • Еремин Владимир Васильевич
  • Логинов Валерий Николаевич
  • Рослякова Мария Викторовна
RU2348595C2
ЖАРОСТОЙКАЯ БЕТОННАЯ СМЕСЬ 2005
  • Чернавин Всеволод Сергеевич
  • Холоденко Владлен Федорович
  • Пушкарская Ольга Юрьевна
  • Орлова Татьяна Николаевна
  • Надеева Ирина Владимировна
  • Фориков Алексей Иванович
  • Шумячер Вячеслав Михайлович
RU2309132C2
Устройство для разгрузки транспортныхСРЕдСТВ 1979
  • Ассовский Игорь Владимирович
  • Мурычев Валентин Борисович
  • Никулин Владимир Федорович
  • Найденов Борис Михайлович
  • Военушкин Сергей Федорович
SU839775A1
WO 1996022953 A1, 01.08.1996
EP 1236696 A1, 04.09.2002
JP 2002029817 A, 29.01.2002.

RU 2 462 435 C1

Авторы

Суворов Станислав Алексеевич

Застрожнов Максим Николаевич

Даты

2012-09-27Публикация

2011-06-07Подача