СПОСОБ ОБРАЩЕНИЯ С ОСАДКАМИ НА ОСНОВЕ МОЛИБДЕНА ПРИ ПЕРЕРАБОТКЕ ОЯТ АЭС Российский патент 2012 года по МПК G21F9/28 

Описание патента на изобретение RU2462776C2

Молибден является одним из продуктов деления (ПД), и в облученном ядерном топливе (ОЯТ) с выгоранием 30-50 ГВт*сут/т его накопление составляет около 4-6 кг/т (U). В ходе растворения ОЯТ и его дальнейшей переработки концентрация молибдена в азотнокислом растворе может достигать 2-4 г/л, то есть в перерабатываемых высокоактивных растворах молибден является макрокомпонентом. Склонность молибдена к полимеризации и образованию нерастворимых осадков как собственных, так и с другими элементами, обуславливают определенные трудности на различных стадиях технологического процесса.

Особенно негативно проявляется образование осадков молибдата циркония при обработке высокоактивного рафината [Kubota M., Fucase Т. Formation of precipitate in high level liquid waste from fuel reprocessing. // J. Nucl. Sci. Techn., 1980, v.17, No.10, p.783-790], в частности, при его упаривании. Известен способ предварительного удаления молибдена путем прогревания рафината при понижении его кислотности [Зильберман Б.Я., Ахматов А.А., Новиков Г.С. и др. Способ обработки высокоактивных азотнокислых рафинатов. Патент РФ №1739784, Бюл.1 (1994 г.)], который мы принимаем за прототип.

Однако этот способ неприменим к исходному раствору ОЯТ АЭС, где также образуются осадки на основе молибдата циркония как на стадии растворения ОЯТ [Adachi Т., Ohnuki M., Yoshida N. Sonobe Т., Kawamura W., Takeishi H., Gunji K., Kimura Т., Suzuki Т., Nakahara Y., Muromura Т., Kobayashi Y., Okashita H., Yamamoto T. Dissolution study of spent PWR fuel: Dissolution behavior and chemical properties of insoluble residues. // J. Nucl. Mater., 1990, v.174, No.1, p.60-71], так и при его подготовке к экстракции (вторичное осадкообразование), и даже в процессе экстракции при переходе урана в экстракт. Этот эффект проявляется в той большей степени, чем выше выгорание ОЯТ, которое сейчас приблизилось к 50 ГВт*сут/т U, причем осадки, представляющие собой в основе нестехиометрический молибдат циркония, содержат в себе до 5% плутония (IУ) [Penneman R.A., Haire R.G., Lloyd M.N. / Polymolybdates as plutonium(IV) hosts. // "Actinide separ. Symp. ACS/CSJ Chem. Cong., Honolulu. Hawai., Apr. 3-5, 1979". Washington, D.C., 1980, p.571-581], что при полном осаждении Мо означает потери до 2% Pu по балансу и делает осадки несбросными.

Поскольку высокая концентрация урана и азотной кислоты замедляет образование молибденсодержащих осадков, при растворении ОЯТ стараются, как правило, подобрать условия, препятствующие осадкообразованию, и/или минимизировать захват ими плутония. При этом отсутствует простой способ растворения основы такого осадка с регенерацией плутония при выведении осадкообразующих элементов на отверждение высокоактивных отходов (ВАО).

Задачей данного изобретения является исключение потери плутония с осадком молибдата циркония.

Для достижения такого технического результата осадок полностью растворяют с использованием разрушаемого комплексообразователя, например перекиси водорода или карбоната одновалентных катионов. После этого комплексообразователь разлагают в среде азотной кислоты так, чтобы остаточная растворимость соединений молибдена была низкой, что имеет место как при достаточно низкой, так и весьма высокой кислотности. Во избежание какого-либо вторичного соосаждения плутония может вводиться восстановитель, стабилизирующий Pu (III), или окислитель для стабилизации Pu (VI). В качестве восстановителя используют гидразиннитрат или U (IV) в присутствии гидразина, а в качестве окислителя - окислы азота или небольшие количества марганца (VII) или же xpoмa (VI). При этом не ставится целью полностью вывести молибден в осадок, поскольку обработанный маточный раствор после вторичного осаждения возвращается на стадию растворения ОЯТ в качестве «подушки» или для разведения концентрированной кислоты, и тем самым некоторое количество молибдена зацикловывается вплоть до выхода системы на баланс.

Введение затравки заранее полученного молибдата циркония, например, с соотношением Zr:Мо~0,5, обеспечивает максимально полное осаждение молибдата циркония сразу после растворения путем нагревания раствора в течение достаточно длительного времени при высокой температуре так, чтобы негативное действие молибдена далее не сказывалось ни на одной операции технологической цепи, вплоть до отверждения ВАО. Для повышения температуры раствор при необходимости кипятят или прогревают в автоклаве при еще более высокой температуре.

Предлагаемый способ осуществляют в последовательности операций, представленных в Примере 1.

Пример 1.

Из исходного модельного раствора ОЯТ ВВЭР с выгоранием 40 ГВт*сут/т, полученного после растворения в исходной 8 моль/л HNO3 в течение 6 ч при 95°C и содержащего 300 г/л U, 2,8 г/л Рu, 1,4 г/л Мо, 1,6 г/л Zr и 2,5 моль/л, выпадает осадок молибдата циркония с другими примесями. При этом в растворе остается 0,5 г/л Мо и 1 г/л Zr; потери плутония составляют ~0,1 г/л. Осадок центрифугируют, промывают малым количеством 2-4 моль/л HNO3, распульповывают с использованием 6 моль/л HNO3 из расчета получения раствора 60 г/л Мо, внося при этом концентрированную перекись водорода из расчета 1,5-2 моль/л, нагревают с повышением температуры от 60 до 95°C в течение 8 ч, после чего разбавляют до 2 моль/л HNO3 и нагревают еще 6 ч. В горячий раствор вносят раствор U (IV) с гидразином из расчета 5 г/л, после чего систему нагревают еще 4 ч, охлаждают и центрифугируют. Осадок удаляют, а маточный раствор в реальном производстве возвращают в голову процесса растворения ОЯТ в качестве «подушки» или на разбавление поступающей сюда концентрированной азотной кислоты. Потери плутония с осадком снижаются в 50 раз.

Пример 2.

Упомянутый в п.1 исходный модельный раствор ОЯТ ВВЭР дополнительно нагревают при 95°С в течение 48 ч. При этом в растворе остается 0,2 г/л Мо и 0,25 г/л Zr; потери плутония составляют ~0,15 г/л. Далее осадок обрабатывают как в примере 1.

Пример 3.

Исходный модельный раствор ОЯТ ВВЭР с выгоранием 40 ГВт*сут/т, содержащий 500 г/л U, 4,3 г/л Pu, 2,3 г/л Mo, 2,6 г/л Zr и 3 моль/л HNO3 нагревают в автоклаве при температуре 120°C в течение 8 ч. При этом в растворе остается 0,15 г/л Мо и 1,15 г/л Zr; потери плутония составляют ~0,25 г/л. Осадок отделяют и обрабатывают как в примере 1 с тем отличием, что вместо введения в систему раствора U (IV) ее насыщают окислами азота (газообразный NO2) из расчета 0,1 моль/л или же вводят эквивалентное количество Cr (VI) или Mn (VII).

Пример 4.

Исходный модельный раствор ОЯТ ВВЭР с выгоранием 40 ГВт*сут/т, содержащий 800 г/л U, 7,8 г/л Pu, 3,6 г/л Мо, 4,5 г/л Zr и 1,5 моль/л NaNO3 кипятят при атмосферном давлении (117°C) в течение 8 ч с предварительным добавлением 12 г/л затравки ZrO(Mo2O7)(H2O)2. При этом в растворе остается 0,15 г/л Мо и 0,5 г/л Zr; потери плутония составляют ~0,5 г/л. Осадок центрифугируют, промывают малым количеством воды и обрабатывают раствором 2 моль/л Na2CO3 из расчета получения 50 г/л Мо и нагревают при 95°C в течение 2 ч, после чего разлагают соду добавлением концентрированной азотной кислоты из расчета избытка до 2 моль/л HNO3 и нагревают еще 2 ч при добавлении гидразиннитрата из расчета 0,1 моль/л. Далее отделяют осадок как в примере 1.

Приведенные примеры подтверждают возможность исключения вторичного осадкообразования и обеспечивают сокращение потерь плутония с осадком в 30-100 раз. Способ технически осуществим в рамках любой известной схемы вскрытия и растворения ОЯТ с осветлением исходного раствора.

Похожие патенты RU2462776C2

название год авторы номер документа
СПОСОБ ПЕРЕРАБОТКИ ОЯТ АЭС 2010
  • Федоров Юрий Степанович
  • Зильберман Борис Яковлевич
  • Голецкий Николай Дмитриевич
  • Рябков Дмитрий Викторович
  • Шадрин Андрей Юрьевич
  • Блажева Ирина Владимировна
  • Кудинов Александр Станиславович
  • Кухарев Дмитрий Николаевич
RU2454742C1
СПОСОБ СЕЛЕКТИВНОГО ИЗВЛЕЧЕНИЯ РАДИОНУКЛИДОВ ИЗ РАДИОАКТИВНЫХ АЗОТНОКИСЛЫХ РАСТВОРОВ (ВАРИАНТЫ) 2012
  • Кудинов Александр Станиславович
  • Голецкий Николай Дмитриевич
  • Зильберман Борис Яковлевич
  • Зубехина Белла Юрьевна
  • Мурзин Андрей Анатольевич
  • Петров Юрий Юрьевич
  • Боровиков Евгений Алексеевич
  • Федоров Юрий Степанович
  • Сытник Леонид Васильевич
  • Наумов Андрей Александрович
RU2522544C2
СПОСОБ ПОДГОТОВКИ КАРБИДНОГО ОЯТ К ЭКСТРАКЦИОННОЙ ПЕРЕРАБОТКЕ 2014
  • Кудинов Александр Станиславович
  • Голецкий Николай Дмитриевич
  • Зильберман Борис Яковлевич
  • Федоров Юрий Степанович
  • Мурзин Андрей Анатольевич
  • Мишина Надежда Евгеньевна
RU2570657C1
СПОСОБ ПОДГОТОВКИ РАСТВОРОВ ПЕРЕРАБОТКИ ОЯТ, СОДЕРЖАЩИХ КОМПЛЕКСООБРАЗУЮЩИЕ ВЕЩЕСТВА, ДЛЯ ЭКСТРАКЦИОННОГО ИЗВЛЕЧЕНИЯ МНОГОВАЛЕНТНЫХ АКТИНИДОВ 2011
  • Кудинов Александр Станиславович
  • Голецкий Николай Дмитриевич
  • Зильберман Борис Яковлевич
  • Агафонова-Мороз Марина Сергеевна
  • Мурзин Андрей Анатольевич
  • Петров Юрий Юрьевич
  • Кухарев Дмитрий Николаевич
  • Родионов Сергей Анатольевич
  • Федоров Юрий Степанович
  • Ермолин Владимир Станиславович
  • Ворошилов Юрий Аркадьевич
  • Логунов Михаил Васильевич
  • Чистяков Владимир Михайлович
  • Погляд Сергей Степанович
RU2490735C2
СПОСОБ ПЕРЕРАБОТКИ ОБЛУЧЕННОГО ЯДЕРНОГО ТОПЛИВА АТОМНЫХ ЭЛЕКТРОСТАНЦИЙ 2010
  • Сытник Леонид Васильевич
  • Зильберман Борис Яковлевич
  • Блажева Ирина Владимировна
  • Шадрин Андрей Юрьевич
  • Пузиков Егор Артурович
  • Голецкий Николай Дмитриевич
  • Кухарев Дмитрий Николаевич
  • Боровиков Евгений Алексеевич
  • Федоров Юрий Степанович
RU2454741C1
СПОСОБ ПОДГОТОВКИ КАРБИДНОГО ОЯТ К ЭКСТРАКЦИОННОЙ ПЕРЕРАБОТКЕ (ВАРИАНТЫ) 2013
  • Кудинов Александр Станиславович
  • Голецкий Николай Дмитриевич
  • Зильберман Борис Яковлевич
  • Федоров Юрий Степанович
  • Мурзин Андрей Анатольевич
  • Сытник Леонид Васильевич
RU2529185C1
СПОСОБ ИЗВЛЕЧЕНИЯ МОЛИБДЕНА-99 ИЗ РАСТВОРА ОБЛУЧЕННЫХ УРАНОВЫХ МИШЕНЕЙ 2013
  • Баранов Сергей Васильевич
  • Баторшин Георгий Шамилевич
  • Бугров Константин Владимирович
  • Логунов Михаил Васильевич
  • Ворошилов Юрий Аркадьевич
  • Яковлев Николай Геннадьевич
  • Мурзин Андрей Анатольевич
  • Зильберман Борис Яковлевич
  • Голецкий Николай Дмитриевич
  • Блажева Ирина Владимировна
  • Кудинов Александр Станиславович
  • Агафонова-Мороз Марина Сергеевна
  • Федоров Юрий Степанович
RU2545953C2
СПОСОБ ОСАЖДЕНИЯ ДИОКСИДА ТЕХНЕЦИЯ ИЗ РАСТВОРОВ ОТ ПЕРЕРАБОТКИ ОБЛУЧЕННОГО ЯДЕРНОГО ТОПЛИВА АТОМНЫХ ЭЛЕКТРОСТАНЦИЙ 2000
  • Зильберман Б.Я.
  • Ахматов А.А.
  • Блажева И.В.
  • Старченко В.А.
  • Алой А.С.
RU2201896C2
СПОСОБ ВЫВЕДЕНИЯ НЕПТУНИЯ ПРИ ФРАКЦИОНИРОВАНИИ ДОЛГОЖИВУЩИХ РАДИОНУКЛИДОВ 2010
  • Зильберман Борис Яковлевич
  • Сытник Леонид Васильевич
  • Шадрин Андрей Юрьевич
  • Голецкий Николай Дмитриевич
  • Федоров Юрий Степанович
  • Криницын Алексей Павлович
RU2454740C1
СПОСОБ ПОДГОТОВКИ МОЛИБДЕНСОДЕРЖАЩИХ ХВОСТОВЫХ РАСТВОРОВ И КОНЦЕНТРАТОВ ДОЛГОЖИВУЩИХ РАДИОНУКЛИДОВ ОТ ПЕРЕРАБОТКИ ОБЛУЧЕННОГО ЯДЕРНОГО ТОПЛИВА АТОМНЫХ ЭЛЕКТРОСТАНЦИЙ 1999
  • Зильберман Б.Я.
  • Федоров Ю.С.
  • Старченко В.А.
  • Ахматов А.А.
  • Красников Л.В.
RU2164715C2

Реферат патента 2012 года СПОСОБ ОБРАЩЕНИЯ С ОСАДКАМИ НА ОСНОВЕ МОЛИБДЕНА ПРИ ПЕРЕРАБОТКЕ ОЯТ АЭС

Изобретение относится к переработке отработанного ядерного топлива атомных электростанций (ОЯТ АЭС). Способ обращения с осадками на основе молибдена при переработке ОЯТ АЭС предусматривает осаждение молибдена в виде нестехиометрического молибдата циркония при нагревании азотнокислого исходного раствора, отличающийся тем, что осадок, самопроизвольно выпавший или осажденный при нагревании при температуре 95-130°С исходного раствора, содержащего 100-900 г/л U и 1,0-3,5 моль/л HNO3, отделяют от него и обрабатывают раствором разрушаемого комплексообразователя, который затем разлагают, после чего осаждают молибден повторно при повышенной температуре и регулируемой кислотности раствора, вводя несолеобразующий окислительно-восстановительный реагент, а маточный раствор возвращают в процесс. В качестве комплексообразователей молибдена используют лиганды, способные к саморазложению без остатка в азотнокислых растворах, в частности перекиси водорода или карбонаты одновалентных катионов. В качестве восстановителя используют гидразиннитрат или U (IV) в присутствии гидразина, а в качестве окислителя - окислы азота или небольшие количества Мn (VII) или Сr (VI). Изобретение позволяет исключить потери плутония с осадками молибдата циркония. 6 з.п. ф-лы, 4 пр.

Формула изобретения RU 2 462 776 C2

1. Способ обращения с осадками на основе молибдена при переработке отработанного ядерного топлива атомной электростанции (ОЯТ АЭС), включающий осаждение молибдена в виде нестехиометрического молибдата циркония при нагревании азотнокислого исходного раствора, отличающийся тем, что осадок, самопроизвольно выпавший или осажденный при нагревании исходного раствора и отделенный от маточного раствора, обрабатывают раствором разрушаемого комплексообразователя, который затем разлагают, после чего осаждают молибден повторно при повышенной температуре и регулируемой кислотности раствора, вводя несолеобразующий окислительно-восстановительный реагент, а маточный раствор возвращают в процесс.

2. Способ по п.1, отличающийся тем, что первичное осаждение проводят непосредственно после растворения ОЯТ в течение 4-10 ч при температуре 95-130°С из раствора содержащего 100-900 г/л U и 1,0-3,5 моль/л HNO3.

3. Способ по п.1 или 2, отличающийся тем, что в раствор перед нагреванием вносится затравка заранее полученного молибдата циркония.

4. Способ по п.2, отличающийся тем, что в качестве комплексообразователей используют лиганды, комплексующие молибден и способные к саморазложению без остатка в азотнокислых растворах, в частности перекись водорода или карбонаты одновалентных катионов с получением раствора, содержащего до 60 г/л молибдена.

5. Способ по п.4, отличающийся тем, что полученный раствор молибдена подкисляют или разбавляют водой в зависимости от выбранного комплексообразователя и нагревают до максимально возможного осаждения соединений молибдена с попутным разложением комплексообразователя, причем при необходимости вводят дополнительное количество концентрата циркония при соотношении 1<Zr:Mo<2.

6. Способ по п.5, отличающийся тем, что в качестве восстановителя используют гидразиннитрат или U (IV) в присутствии гидразина, а в качестве окислителя - окислы азота или небольшие количества марганца (VII) или хрома (VI).

7. Способ по п.1, отличающийся тем, что маточный раствор от переосаждения осадка, содержащий делящиеся и осколочные радионуклиды, возвращают в основной цикл переработки ОЯТ, объединяя с осветленным раствором ОЯТ или с азотной кислотой, поступающей в узел растворения в качестве «подушки», а осадок молибдена выводят на захоронение или на отверждение в совместно с кубовым остатком от упаривания высокоактивного рафината.

Документы, цитированные в отчете о поиске Патент 2012 года RU2462776C2

СПОСОБ ОБРАБОТКИ ВЫСОКОАКТИВНЫХ АЗОТНОКИСЛЫХ РАФИНАТОВ 1990
  • Зильберман Б.Я.
  • Труханова С.Я.
  • Дзекун Е.Г.
  • Новиков Г.С.
  • Прокопчук Ю.З.
  • Зайцев Б.Н.
  • Ахматов А.А.
  • Огарышев Н.А.
  • Сапрыкин В.Ф.
  • Родионов В.И.
  • Королев В.А.
SU1739784A1
СПОСОБ ПОДГОТОВКИ МОЛИБДЕНСОДЕРЖАЩИХ ХВОСТОВЫХ РАСТВОРОВ И КОНЦЕНТРАТОВ ДОЛГОЖИВУЩИХ РАДИОНУКЛИДОВ ОТ ПЕРЕРАБОТКИ ОБЛУЧЕННОГО ЯДЕРНОГО ТОПЛИВА АТОМНЫХ ЭЛЕКТРОСТАНЦИЙ 1999
  • Зильберман Б.Я.
  • Федоров Ю.С.
  • Старченко В.А.
  • Ахматов А.А.
  • Красников Л.В.
RU2164715C2
СПОСОБ ОСАЖДЕНИЯ ДИОКСИДА ТЕХНЕЦИЯ ИЗ РАСТВОРОВ ОТ ПЕРЕРАБОТКИ ОБЛУЧЕННОГО ЯДЕРНОГО ТОПЛИВА АТОМНЫХ ЭЛЕКТРОСТАНЦИЙ 2000
  • Зильберман Б.Я.
  • Ахматов А.А.
  • Блажева И.В.
  • Старченко В.А.
  • Алой А.С.
RU2201896C2
ТОПЛИВОЗАПРАВЩИК С ЭЛЕКТРООЧИСТИТЕЛЯМИ 2009
  • Копылов Геннадий Алексеевич
  • Ковалев Вячеслав Данилович
RU2390474C1
JP 2002333497 A, 22.11.2002.

RU 2 462 776 C2

Авторы

Голецкий Николай Дмитриевич

Зильберман Борис Яковлевич

Блажева Ирина Владимировна

Шадрин Андрей Юрьевич

Кудинов Александр Станиславович

Мишина Надежда Евгеньевна

Хонина Ирина Вадимовна

Даты

2012-09-27Публикация

2010-12-23Подача