Изобретение относится к области радиохимической технологии, а именно к переработке водно-хвостовых азотно-кислых растворов (рафинатов), образующихся при регенерации облученного ядерного топлива (ОЯТ). Оно может быть использовано в комплексных технологических схемах фракционирования высокоактивных отходов (ВАО) в рамках Модифицированного Пурекс-процесса [Proceedings of the International Topical Meeting on Nuclear and Hazardous Waste Management (Spectrum'94). August 14 - 18, 1994, Atlanta, Georgia, USA, vol.1, p. 581-585] для отверждения в виде матриц и захоронения долгоживущих радионуклидов, а также тех продуктов деления, остекловывание которых вызывает те или иные затруднения.
В настоящее время после извлечения целевых компонентов высокоактивный рафинат упаривают и направляют либо на хранение, либо на остекловывание, где присутствие молибдена существенно ограничивает возможности снижения объема стекла. Таким образом, решение задачи локализации молибдена и переведения его в пригодную для захоронения форму позволяет значительно сократить количество радиоактивных отходов.
Для удаления молибдена из высокоактивных хвостовых растворов предлагались различные способы. В частности, в способе [Патент SU N 2106030, МПК B 01 D 11/04, БИ N 6, 1998] предложено экстракционное извлечение и разделение трансурановых и редкоземельных элементов (ТПЭ и РЗЭ), а также молибдена с использованием совместимых с основным экстрагентом первого цикла алкилфосфорных кислот и их солей. Разделение ТПЭ, РЗЭ и молибдена происходит в процессе реэкстракции, причем последний реэкстрагируют с использованием комплексообразователя. Однако далее возникает вопрос об утилизации выделенных фракций. Прямое упаривание азотно-кислых растворов молибдена приводит к выпадению молибденовой кислоты, теряющей воду при нагревании с образованием трехокиси молибдена, которая весьма склонна к возгонке [Химия и технология редких и рассеянных элементов, ч. 3. Под ред. К.А. Большакова. М., 1978]. Таким образом, захоронение отдельной молибденовой фракции становится невозможным, а поиск соединений молибдена, отвечающих требованиям локализации - вполне актуальным.
Авторы способа [Патент SU N 1739784, МПК G 21 F 9/08, БИ N 1, 1994] предлагают осаждать молибден непосредственно из рафината первого цикла от переработки ОЯТ АЭС продолжительной выдержкой раствора при температуре 80 - 95oC. При этом более 90% его выпадает в осадок в виде молибдата циркония. Реализация этого способа требует разбавления раствора для снижения кислотности до 1,0 - 1,5 моль/л, а также сложного аппаратурно-технологического оформления. Однако, как показала проверка, для полученного осадка характерна невысокая термическая устойчивость: при температуре свыше 600oC молибдат циркония начинает разлагаться с выделением летучей трехокиси молибдена, что практически не отличается от летучести чистой его трехокиси.
Исследованные образцы содержат молибден и цирконий в стехиометрическом соотношении 1,5 - 2 к 1, что близко к их соотношению в выгоревшем ядерном топливе. Как показали исследования, улучшенные показатели могут быть достигнуты при одновременном осаждении молибдата и избыточной гидроокиси циркония в слабощелочной среде. Изменение соотношения Mo:Zr до 5 - 7 в пользу циркония повышает температуру возгонки до 800oC - 850oC, но требует введения значительного количества циркония сверх его содержания в качестве продукта деления урана. Тем не менее осадительный способ связывания молибдена можно принять за прототип.
Задачей данного изобретения является разработка способа подготовки концентратов молибдена и циркония, а также долгоживущих радионуклидов (РЗЭ и ТПЭ), к отверждению в виде матрицы без введения дополнительных солеобразующих веществ, обеспечивающего полноту локализации и исключающего летучесть окислов молибдена на стадии получения пресс-порошка. Наряду с этим необходимо обеспечить полноту выведения молибдена и других солеобразующих составляющих в продукт, идущий на формирование матрицы.
Поставленная задача достигается тем, что азотно-кислый раствор молибдена подвергают восстановительному осаждению с выведением в осадок не менее 90% металла, а для доосаждения используют концентраты, содержащие цирконий, РЗЭ и ТПЭ. При этом количество молибдена в растворе не превышает 1% от исходного. Полученный осадок после сушки термически устойчив вплоть до температуры 900oC - 950oC, достаточной для получения пресс-порошков.
В практическом плане концентрат молибдена (до 20 г/л Mo) представляет собой раствор пероксида молибдена в 4-6 мол/л азотной кислоте. Разложение комплекса проводят нагреванием раствора до 60oC - 80oC в течение 1-2 часов, причем весь молибден остается в растворе.
В качестве восстановителя используют раствор гидразингидрата. В литературе приводится большой массив данных по восстановлению молибдена до пятивалентного состояния [Gmelin Handbuch. Molibden: Supplement Vol. В 3, 1984], в подавляющем большинстве случаев - в кислых средах. В щелочной среде и при большом избытке гидразингидрата восстановление, по-видимому, проходит более глубоко.
В производственных условиях достаточно сложно обеспечить быстрое смешение щелочных и кислых растворов, обеспечивающее полноту прохождения процесса, с созданием избытка осадителя. Поэтому в таких случаях может использоваться режим обратного осаждения, когда кислый раствор вливается в концентрированный щелочной раствор, содержащий необходимый конечный избыток осадителя. Одновременно создаются оптимальные условия для максимального восстановления молибдена.
Полнота осаждения и восстановления молибдена определяется температурой и длительность процедуры, а также концентрацией гидразингидрата. Динамика процесса такова, что для "первичного" осаждения восстановленных форм молибдена на 90% и более необходима выдержка с концентрированным раствором гидразингидрата в течение 20-30 ч. при температуре 90 - 100oC. При более низких температурах (60 - 80oC) степень восстановления, а следовательно, и осаждения - недостаточна. В то же время чрезмерный избыток восстановителя нежелателен, так как образующийся в щелочной среде гидроксикомлекс обладает большей растворимостью, чем гидроксид молибдена.
Достигаемая полнота осаждения (около 90%) является недостаточной, поэтому решающее значение имеет выбор доосадителя. Известно, что в щелочной среде молибден существует преимущественно в анионных формах [Бусев А.И. Аналитическая химия молибдена. М. , 1962], поэтому после обратного осаждения предлагается вводить в маточник катионы, способные образовывать термически устойчивые осадки с анионами молибдена. Поскольку после "первичного" осаждения в растворе существуют в равновесии как восстановленные, так и окисленные формы молибдена, для доосаждения предложено использовать разновалентные катионы - например, азотно-кислые растворы циркония и редкоземельных металлов. Оптимальный результат достигается в случае их совместного введения в виде азотно-кислого раствора при концентрации кислоты - 0,5-2 моль/л. Если в качестве концентрата этих металлов используется кубовый раствор от упаривания соответствующих реэкстрактов и рафинатов Модифицированного Пурекс-процесса, то его необходимо нейтрализовать до указанной кислотности раствором гидразина.
Таким образом, предлагаемый способ позволяет отверждать в виде матриц концентраты осколочных элементов и долгоживущих радионуклидов (РЗЭ и ТПЭ) без введения дополнительных солеобразующих веществ, обеспечивает полноту локализации и исключает летучесть соединений молибдена на стадии получения пресс-порошка.
ПРИМЕРЫ
В нижеприведенных примерах концентрат молибдена получали экстракцией по способу [Патент SU N 2106030, МПК В 01 D 11/04, БИ N 6, 1998] с его реэкстракцией в кислый раствор перекиси водорода. Реэкстракт, содержащий 7,5 г/л Mo и 34 г/л (1 моль/л) перекиси водорода в 5 моль/л азотной кислоте, нагревают до 80oC в течение двух часов. О разрушении пероксидного комплекса можно судить по исчезновению характерной желтой окраски раствора, при этом весь молибден остается в растворе. Остаточная концентрация перекиси водорода не превышает 200 мг/л. Концентрат готов для дальнейшей переработки.
Пример 1. Растворы, содержащие, соответственно, 11 г/л молибдена и 73 г/л циркония в 4,5 моль/л азотной кислоте смешивают и разбавляют до 1 моль/л по кислоте (в безопасных по гидролизу солей циркония пределах) и концентрации молибдена - 2,5 г/л при мольном соотношении Mo:Zr = 2:1. Объединенный раствор нагревают до 80oC и выдерживают двое суток. Выпадает мелкий плохо фильтрующийся осадок состава Zr(ОН)2Mo2O7·2H2O, содержащий 43% молибдена. Остаточная концентрация молибдена в растворе - 110 мг/л (4% от ввода).
Осадок при нагревании теряет воду (15 мас.%) в интервале температур 50 - 270oC, эндопик при 200oC. Дальнейшая потеря массы образца, обусловленная летучестью трехокиси молибдена, проявляется уже при 550oC и при повышении температуры до 915oC составляет более 18 мас.% без тенденции к ограничению.
Пример 1 является реализацией способа по прототипу, но термогравиметрические характеристики образца в плане летучести молибдена представляются неудовлетворительными для последующего прессования таблеток.
Пример 2. Опыт проводится в режиме Примера 1 с тем отличием, что исходные растворы смешивают в мольном соотношении Mo:Zr = 1:1 и после прогрева с осаждением молибдата циркония дополнительно нейтрализуют водным аммиаком до pH 7,5 для полного осаждения циркония. Остаточное содержание молибдена в растворе не превышает 0,5%. Осадок - смесь молибдата и гидроокиси циркония имеет термогравиметрические показатели, аналогичные Примеру 1.
Пример 3. Раствор, содержащий по 13 г/л молибдена и циркония в 5,5 моль/л азотной кислоте, быстро и на холоде обрабатывают 15% избытком водного аммиака до pH 10 и после выдержки на водяной бане при 80oC в течение 2 часов и отделения осадка анализируют фильтрат. В растворе найдено 2,05 г/л молибдена или 78% от ввода, цирконий не обнаружен, т.е. эффект от повышения pH оказывается обратным ожидаемому.
Полнота осаждения молибдена недостаточна, вследствии чего термогравиметрия не проводилась.
Пример 4. Осаждение проводится в условиях Примера 3, но в качестве осадителя используется гидразингидрат как более мягкий щелочной агент, обладающий одновременно восстановительными свойствами. Остаточная концентрация молибдена в растворе (pH 7,5; с учетом разбавления составляет 36,5% от исходной. Выдержка при температуре 80oC не приводит к большему осаждению молибдена.
Пример 5. Осаждение проводится в условиях Примера 4 с тем отличием, что избыток гидразингидрата составляет 45%. После отделения осадка в растворе (pH 8,5) найдено 85 мг/л или 2,5% от ввода, цирконий не обнаружен.
Осадок представляет собой композицию из гидроокисей циркония и молибдена (на 70% восстановленного). Очевидно, что применение гидразингидрата для осаждения молибдена дает существенный положительный эффект.
Пример 6. Отработка режимов оптимального осаждения проводилась на азотно-кислых растворах молибдена, не содержащих циркония. Раствор, содержащий 12 г/л молибдена в 5,5 моль/л азотной кислоте, при перемешивании нейтрализуют горячим раствором гидразингидрата методом обратного осаждения и выдерживают сутки при 60oC. Выпавший темно-коричневый осадок промывают водой и после сушки при 50oC проводят термогравиметрические измерения. Образец теряет воду (20 мас.%) в интервале от 50 до 350oC и сохраняет массу до 730oC, после чего возгоняется практически нацело.
Пример 7. Опыт проводится в режиме Примера 6 с тем отличием, что при обратном осаждении избыток гидразингидрата составляет 15%, а выдержка проводится при 80oC двое суток. В растворе найдено 260 мг/л молибдена (5% от ввода), причем 90% из них в восстановленной форме.
Осадок промывают последовательно 10% гидразингидратом и водой, после сушки определяют термогравиметрические показатели, аналогичные Примеру 6.
Пример 8. Обратное осаждение проводят в режиме Примера 7 с тем отличием, что избыток разбавленного до 5 моль/л гидразингидрата составляет 50%. После выдержки и отделения осадка в маточнике найдено 630 мг/л молибдена, восстановленного на 95%, или почти 18% от балансового количества. Дополнительная выдержка приводит к увеличению его концентрации в растворе. Темно-коричневый осадок гидроксидов молибдена промывают 20% гидразингидратом, затем водой и сушат в эксикаторе.
Дериватографический анализ образца указывает на 15% потерю массы в интервале температур 50 - 350oC, обусловленную удалением воды; затем - еще 8,5 мас. %, связанную с фазовыми переходами. При повышении температуры свыше 500oC и до предельной 900oC масса образца не изменяется.
Таким образом, положительный термогравиметрический эффект обратного осаждения гидразингидратом обнаруживается при его избытке не менее 50% от стехиометрического. В то же время введение слишком большого избытка гидразина не имеет смысла, так как остаточная концентрация молибдена в щелочном растворе чрезмерно велика.
Пример 9. Раствор, содержащий 12,5 г/л молибдена в 4,5 моль/л азотной кислоте, обрабатывают 50% избытком гидразингидрата в режиме Примера 8. Концентрация молибдена в маточнике над осадком составляет через двое суток 500 мг/л (15% от введенного), восстановленного на 90%.
Затем в систему вводят концентрат лантана и циркония до соотношения Mo: Zr: La = 1,0:1,5:0,3, в результате чего выпадает "вторичный" осадок. После осветления (молибден в растворе не обнаружен) осадок декантируют, промывают 10% раствором гидразина, водой и сушат при 50oC.
Термогравиметрический анализ указывает на дегидратацию в интервале температур 50 - 440oC (13,5 мас.%) и твердофазные превращения при 680 - 770oC, после чего при дальнейшем повышении температуры до 950oC потери массы из-за летучести трехокиси молибдена не превышают 1 мас.%.
Пример 10. Модельный раствор, содержащий 8,7 г/л молибдена в 4,5 моль/л азотной кислоте обрабатывают при перемешивании горячим гидразином методом обратного осаждения и выдерживают сутки при 90oC. Избыток гидразингидрата составляет 165% и необходим для последующего раскисления концентратов металлов-доосадителей.
В результате термической обработки в растворе остается 12% от балансового количества молибдена. Для доосаждения используют концентрат лантана и циркония в 2 моль/л азотной кислоте, в объеме, обеспечивающем соотношение Mo: Zr: La = 1,0:0,75:0,15. Через два часа в осветленном растворе найдено 24 мг/л молибдена, что составляет менее 1,3% от введенного.
Процедура подготовки образца для дериватографии описана в Примере 9. Из дериватограммы следует, что связанная с дегидратацией потеря массы составляет 17,5% и приходится на интервал температур 90 - 450oC, после чего никаких изменений не происходит вплоть до 850oC, где начинает сказываться летучесть окислов молибдена. По достижении конечной температуры опыта 955oC возгоняется около 4 мас.% образца.
Необходимо отметить присутствие ясно выраженного экзопика на дериватограмме в районе 600oC, соответствующего образованию некой кристаллической фазы.
Пример 11. Опыт проводится в режиме Примера 10 с тем отличием, что избыток гидразингидрата на обратное осаждение составляет 75%, а концентрат доосадителей предварительно раскисляют до 0,5 моль/л по азотной кислоте. Остаточная концентрация молибдена в осветленном маточнике составляет: после обратного осаждения - 165 мг/л (4,9 мас.%), после доосаждения - 12 мг/л (< 0,5 мас. %). Таким образом, полнота осаждения достигается в достаточной степени.
Проведенные термогравиметрические испытания подтверждают и температурную устойчивость осадка. Из дериватограммы следует, что потеря массы образца происходит только в области дегидратации - в интервале температур от 50 до 475oC и составляет 18 мас.%. При последующем повышении температуры до конечной температуры опыта - 915oC изменение массы образца не превышало 0,2%. Четко выраженный экзопик при 595oC фиксирует образование кристаллической фазы.
Осадок, полученный в режиме Примера 11, удовлетворяет всем заявленным в задачах изобретения требованиям.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ОСАЖДЕНИЯ ДИОКСИДА ТЕХНЕЦИЯ ИЗ РАСТВОРОВ ОТ ПЕРЕРАБОТКИ ОБЛУЧЕННОГО ЯДЕРНОГО ТОПЛИВА АТОМНЫХ ЭЛЕКТРОСТАНЦИЙ | 2000 |
|
RU2201896C2 |
СПОСОБ ЭКСТРАКЦИОННОЙ ПЕРЕРАБОТКИ ВЫСОКОАКТИВНОГО РАФИНАТА ПУРЕКС-ПРОЦЕССА ДЛЯ ОТРАБОТАННОГО ЯДЕРНОГО ТОПЛИВА АЭС | 2003 |
|
RU2249266C2 |
СПОСОБ ЭКСТРАКЦИОННОГО ИЗВЛЕЧЕНИЯ ТРАНСПЛУТОНИЕВЫХ И РЕДКОЗЕМЕЛЬНЫХ ЭЛЕМЕНТОВ ИЗ КИСЛЫХ РАСТВОРОВ И ИХ РАЗДЕЛЕНИЯ | 1999 |
|
RU2165653C1 |
СПОСОБ ЭКСТРАКЦИОННОГО ИЗВЛЕЧЕНИЯ ДОЛГОЖИВУЩИХ РАДИОНУКЛИДОВ ИЗ ЖИДКИХ РАДИОАКТИВНЫХ ОТХОДОВ | 2001 |
|
RU2224309C2 |
СПОСОБ ПЕРЕРАБОТКИ ОБЛУЧЕННЫХ ТОРИЕВЫХ МАТЕРИАЛОВ | 2001 |
|
RU2200993C2 |
СПОСОБ ЭКСТРАКЦИОННОГО ВЫДЕЛЕНИЯ ЦЕЗИЯ, СТРОНЦИЯ, ТЕХНЕЦИЯ, РЕДКОЗЕМЕЛЬНЫХ И АКТИНИДНЫХ ЭЛЕМЕНТОВ ИЗ ЖИДКИХ РАДИОАКТИВНЫХ ОТХОДОВ | 1999 |
|
RU2180868C2 |
ЭКСТРАКЦИОННАЯ СМЕСЬ ДЛЯ ИЗВЛЕЧЕНИЯ ТПЭ И РЗЭ ИЗ ВЫСОКОАКТИВНОГО РАФИНАТА ПЕРЕРАБОТКИ ОЯТ АЭС И СПОСОБ ЕЁ ПРИМЕНЕНИЯ (ВАРИАНТЫ) | 2016 |
|
RU2623943C1 |
СПОСОБ ЭКСТРАКЦИОННОГО ИЗВЛЕЧЕНИЯ И РАЗДЕЛЕНИЯ ТПЭ И РЗЭ ИЗ АЗОТНОКИСЛЫХ РАСТВОРОВ | 1994 |
|
RU2106030C1 |
СПОСОБ ОТВЕРЖДЕНИЯ КОНЦЕНТРАТА ТРАНСПЛУТОНИЕВЫХ И РЕДКОЗЕМЕЛЬНЫХ ЭЛЕМЕНТОВ В КЕРАМИКУ | 2003 |
|
RU2243609C2 |
СПОСОБ ИЗВЛЕЧЕНИЯ МОЛИБДЕНА-99 ИЗ РАСТВОРА ОБЛУЧЕННЫХ УРАНОВЫХ МИШЕНЕЙ | 2013 |
|
RU2545953C2 |
Изобретение относится к области радиохимической технологии, а именно к переработке водно-хвостовых азотно-кислых растворов (рафинатов), образующихся при регенерации облученного ядерного топлива (ОЯТ). Способ применяется в комплексных технологических схемах фракционирования отходов в рамках Модифицированного Пурекс-процесса для отверждения жидких отходов в виде матриц и захоронения долгоживущих радионуклидов, а также тех продуктов деления, остекловывание которых вызывает те или иные затруднения. Сущность изобретения: восстановительное осаждение молибдена из раствора методом обратного осаждения избытком гидразингидрата, доосаждение его с использованием концентрата продуктов деления и трансурановых элементов, локализация молибдена, циркония, нептуния, редкоземельных и трансурановых элементов (РЗЭ и ТПЭ) в пригодной для захоронения форме. Технический результат заключается в возможности отверждения в виде матриц концентратов осколочных элементов и долгоживущих радионуклидов (РЗЭ и ТПЭ) без введения дополнительных солеобразующих веществ, обеспечении полноты локализации и исключении летучести соединений молибдена на стадии получения пресс-порошка. 6 з.п. ф-лы.
СПОСОБ ОБРАБОТКИ ВЫСОКОАКТИВНЫХ АЗОТНОКИСЛЫХ РАФИНАТОВ | 1990 |
|
SU1739784A1 |
RU 2066493 C1, 10.09.1996 | |||
СПОСОБ ОБРАБОТКИ ВЫСОКОАКТИВНЫХ АЗОТНОКИСЛЫХ РАФИНАТОВ ОТ РЕГЕНЕРАЦИИ ТОПЛИВА АЭС | 1993 |
|
RU2080666C1 |
СПОСОБ УТИЛИЗАЦИИ ОКСАЛАТНЫХ МАТОЧНЫХ РАСТВОРОВ ТРАНСУРАНОВЫХ ЭЛЕМЕНТОВ | 1996 |
|
RU2111562C1 |
GB 997423 A1, 19.06.1963 | |||
Способ определения активности аллергена | 1983 |
|
SU1215669A1 |
DE 3243841 A1, 30.05.1984. |
Авторы
Даты
2001-03-27—Публикация
1999-06-23—Подача