СПОСОБ ПОЛУЧЕНИЯ УКСУСНОЙ КИСЛОТЫ Российский патент 2012 года по МПК C07C53/08 C07C51/12 B01J23/62 

Описание патента на изобретение RU2463287C2

Настоящее изобретение относится к способу получения уксусной кислоты, в частности к способу получения уксусной кислоты карбонилированием метанола и/или его реакционно-способного производного в присутствии промотированного иридиевого катализатора.

Получение уксусной кислоты карбонилированием метанола в присутствии иридиевого катализатора и промотора, такого как рутениевый, описано, например, в ЕР-А-0752406, ЕР-А-0849248, ЕР-А-0849249 и ЕР-А-1002785.

В ЕР-А 0643034 описан способ карбонилирования метанола и/или его реакционно-способного производного в присутствии уксусной кислоты, иридиевого катализатора, метилиодида, воды в по меньшей мере ограниченной концентрации, метилацетата и промотора, выбранного из рутения и осмия.

В ЕР-А 0749948 описан способ карбонилирования алифатического спирта, такого как метанол, и/или его реакционно-способного производного с получением соответствующей карбоновой кислоты и/или сложного эфира в присутствии иридиевого катализатора, алкилгалогенида, воды и по меньшей мере одного промотора, выбранного из кадмия, ртути, цинка, галлия, индия и вольфрама, необязательно с сопромотором, выбранным из рутения, осмия и рения.

В процессе карбонилирования с применением иридиевого катализатора, промотированного рутением, было установлено, что чем выше концентрация промотора, тем выше скорость реакции. Однако было также установлено, что в определенных условиях может происходить выпадение каталитической системы в осадок.

Таким образом, сохраняется потребность в разработке способа катализируемого иридием промотируемого карбонилирования, в котором вышеупомянутые недостатки уменьшены.

Выполнение настоящего изобретения позволяет разрешить вышеуказанную техническую проблему применением промотированной не рутением иридиевой каталитической системы, которая включает иридий, бор и галлий.

Соответственно, объектом настоящего изобретения является способ получения уксусной кислоты карбонилированием метанола и/или его реакционно-способного производного моноксидом углерода в по меньшей мере одной зоне реакции карбонилирования, содержащей жидкую реакционную композицию, включающую иридиевый катализатор карбонилирования, метилиодидный сокатализатор, воду в ограниченной концентрации, уксусную кислоту, метилацетат и в качестве промоторов бор и галлий.

Было установлено, что благодаря применению промотированной бором и галлием иридиевой каталитической системы устраняется потребность в рутениевом промоторе при одновременном сохранении удовлетворительной скорости реакции карбонилирования. Кроме того, бор/галлий/иридиевая каталитическая система, используемая в предлагаемом способе, обладает более низкой стоимостью, если сравнивать с промотированной рутением каталитической системой.

Кроме того, существуют экологические преимущества, связанные с предлагаемой каталитической системой, поскольку она обладает более низкой токсичностью по сравнению с промотированной рутением иридиевой каталитической системой.

В способе по настоящему изобретению приемлемые реакционно-способные производные метанола включают метилацетат, диметиловый эфир и метилиодид. В качестве реагентов в способе по настоящему изобретению можно использовать смесь метанола и его реакционно-способных производных. В качестве сореагента для простых эфирных или сложноэфирных реагентов требуется вода. В предпочтительном варианте в качестве реагентов используют метанол и/или метилацетат.

Вследствие реакции с получаемой карбоновой кислотой или растворителем по меньшей мере некоторое количество метанола и/или его реакционно-способного производного обычно превращается и, следовательно, содержится в жидкой реакционной композиции в виде метилацетата. В предпочтительном варианте концентрация метилацетата в жидкой реакционной композиции находится в интервале от 1 до 70 мас.%, более предпочтительно от 2 до 50 мас.%, наиболее предпочтительно от 3 до 35 мас.%.

В жидких реакционных композициях in situ может образовываться вода, например вследствие реакции эстерификации между метанольным реагентом и получаемой уксусной кислотой. Воду можно вводить в реакционную зону карбонилирования совместно или отдельно от других компонентов жидкой реакционной композиции. Воду можно отделять от других компонентов жидкой реакционной композиции, отводимой из реакционной зоны и можно возвращать в процесс в регулируемых количествах для того, чтобы поддержать в жидкой реакционной композиции требуемую концентрацию воды. В предпочтительном варианте концентрация воды в жидкой реакционной композиции находится в интервале от 0,1 до 20 мас.%, более предпочтительно от 1 до 15 мас.% и тем не менее еще более предпочтительно от 1 до 10 мас.%.

В предпочтительном варианте концентрация метилиодидного сокатализатора в жидкой реакционной композиции находится в интервале от 1 до 20 мас.%, предпочтительнее от 2 до 16 мас.%.

Иридиевый катализатор в жидкой реакционной композиции может включать любое иридийсодержащее соединение, которое растворимо в этой жидкой реакционной композиции. Иридиевый катализатор можно добавлять в жидкую реакционную композицию в любой приемлемой форме, в которой он растворяется в жидкой реакционной композиции или способен превращаться в растворимую форму. В предпочтительном варианте иридий можно использовать в виде свободного от хлорида соединения, такого как ацетаты, которые растворимы в одном или нескольких компонентах жидкой реакционной композиции, например в воде и/или уксусной кислоте, и, таким образом, можно вводить в реакцию в виде растворов в них. Примеры приемлемых иридийсодержащих соединений, которые можно добавлять в жидкую реакционную композицию, включают IrCl3, IrI3, IrBr3, [Ir(CO)2I]2, [Ir(CO)2Cl]2, [Ir(CO)2Br]2, [Ir(CO)4I2]-H+, [Ir(CO)2Br2]-H+ [Ir(CO)2I2]-H+, [Ir(СН3)I3(CO)2]-Н+, Ir4(CO)12, IrCl3·4H2O, IrBr3·4H2O, Ir3(СО)12, металлический иридий, Ir2O3, IrO2, Ir(асас)(СО)2, Ir(асас)3, ацетат иридия, [Ir3O(ОАс)6(H2O)3][ОАс] и гексахлориридиевую кислоту Н2[IrCl6], предпочтительно свободные от хлорида комплексы иридия, такие как ацетаты, оксалаты и ацетоацетаты.

Предпочтительная концентрация иридиевого катализатора в жидкой реакционной композиции находится в интервале от 100 до 6000 мас. ч./млн иридия.

Жидкая реакционная композиция дополнительно включают боровый и галлиевый промоторы. Промоторы можно добавлять в жидкую реакционную композицию для реакции карбонилирования в любой приемлемой форме, в которой он растворяется в жидкой реакционной композиции или способен превращаться в растворимую форму.

Примеры приемлемых галлийсодержащих соединений, которые могут быть использованы, включают ацетилацетонат галлия, ацетат галлия, GaCl3, GaBr3, GaI3, GaCl4 и Ga(ОН)3.

Примеры приемлемых борсодержащих соединений, которые могут быть использованы, включают борную кислоту, BCl3 и BI3.

В предпочтительном варианте каждый промотор содержится в эффективном количестве, вплоть до предела его растворимости в жидкой реакционной композиции и/или любых жидких технологических потоках, возвращаемых со стадии выделения уксусной кислоты в реактор для карбонилирования. Целесообразное содержание каждого промотора в жидких реакционных композициях таково, что молярное соотношение между промотором и иридием составляет [от больше 0 до 15]:1, в частности в интервале [от 1 до 10]:1. Приемлемая концентрация каждого промотора в жидкой реакционной композиции составляет меньше 8000 ч./млн.

В целесообразном варианте молярное соотношение иридия/бора/галлия может находиться в интервале 1:[от больше 0 до 15]:[от больше 0 до 15], в частности 1:[от 1 до 10]:[от 1 до 10].

В предпочтительном варианте иридий, бор- и галлийсодержащие соединения свободны от примесей, которые создают или образуют in situ ионогенные иодиды, которые способны ингибировать реакцию, например соли щелочных или щелочно-земельных металлов, или других металлов.

В жидкой реакционной композиции следует поддерживать минимальную концентрацию ионогенных загрязняющих примесей, таких как, например, (а) коррелирующие металлы, в частности никель, железо и хром, и (б) фосфины, азотсодержащие соединения или лиганды, которые способны к кватернизации in situ, поскольку они оказывают, по-видимому, нежелательное влияние на протекание реакции вследствие образования в жидкой реакционной композиции ионов I-, которые оказывают негативное воздействие на скорость реакции. Некоторые коррелирующие металлические примеси, например, такие как молибден, оказываются, как было установлено, менее чувствительными к выделению ионов I-. Содержание корродирующих металлов, которые оказывают отрицательное влияние на скорость протекания реакции, можно свести к минимальному применением приемлемых стойких к коррозии конструкционных материалов. Подобным же образом следует поддерживать минимальную концентрацию таких примесей, как иодиды щелочных металлов, например иодида лития. Концентрацию корродирующих металлов и других ионогенных примесей можно уменьшать применением слоя ионообменных смол, приемлемых для обработки реакционной композиции, или, что предпочтительнее, возвращаемого в процесс потока с катализатором. В предпочтительном варианте содержание ионогенных примесей поддерживают на уровне ниже концентрации, при которой они обладали бы возможностью выделения в жидкой реакционной композиции 500 ч./млн. I-, предпочтительно меньше 250 ч./млн.

Моноксид углерода как реагент для реакций карбонилирования может быть практически чистым или может включать инертные примеси, такие как диоксид углерода, метан, азот, благородные газы, вода и парафиновые С14углеводороды. В предпочтительном варианте концентрацию водорода, содержащегося в монооксиде углерода и образующегося in situ в ходе реакции конверсии водяного газа, поддерживают на низком уровне; например, его парциальное давление составляет меньше 1 бар, поскольку его присутствие может привести к образованию продуктов гидрогенизации. Приемлемое парциальное давление монооксида углерода находится в интервале от 1 до 70 бар, предпочтительно от 1 до 35 бар, а более предпочтительно от 1 до 15 бар.

Совокупное манометрическое давление реакции карбонилирования в целесообразном варианте находится в интервале от 1,0 до 20,0 МПа (от 10 до 200 бар), предпочтительно от 1,0 до 10,0 МПа (от 10 до 100 бар), более предпочтительно от 1,5 до 5,0 МПа (от 15 до 50 бар). Предпочтительная температура реакции карбонилирования находится в интервале от 150 до 220°С.

Способ по настоящему изобретению можно осуществлять в виде периодического или непрерывного процесса, предпочтительно в виде непрерывного процесса.

Получаемую карбоновую кислоту можно выделять из зоны реакции карбонилирования отводом жидкой реакционной композиции и отделением получаемой уксусной кислоты путем осуществления одной или нескольких стадий однократного равновесного испарения и/или фракционной перегонки от других компонентов жидкой реакционной композиции, таких как иридиевый катализатор, борный и галлиевый промоторы, метилиодид, вода и неизрасходованные реагенты, которые могут быть возвращены в зону реакции карбонилирования для того, чтобы сохранить их концентрации в жидкой реакционной композиции.

Способ по настоящему изобретению может быть осуществлен в единственной реакционной зоне или он может быть осуществлен в двух или большем числе реакционных зон. Когда используют две или большее число реакционных зон, жидкая реакционная композиция и реакционные условия в этих реакционных зонах могут быть одинаковыми или разными.

Настоящее изобретение далее проиллюстрировано только в качестве примера со ссылкой на следующие примеры.

Общий метод проведения реакции

Все эксперименты осуществляли в циркониевом автоклаве емкостью 300 см3, оборудованном мешалкой и приспособлением для инжекции жидкости. Автоклав испытывали манометрическим давлением азота минимум 30 бар, а затем три раза продували моноксидом углерода под манометрическим давлением до 3 бар. В автоклав загружали исходный материал, включавший метилацетат, уксусную кислоту, метилиодид, воду и промотор, и в дополнение к исходному материалу вводили небольшое количество моноксида углерода. В балластную емкость вводили моноксид углерода под избыточным давлением.

Автоклав нагревали с перемешиванием (1500 об/мин) до 190°С. Систему для инжекции катализатора заполняли раствором ацетата иридия (приблизит, 5 мас.% иридия, 26% воды, 62,7% уксусной кислоты) и уксусной кислоты и содержимое инжектировали под давлением моноксида углерода с доведением манометрического давления в автоклаве до 28 бар.

За скоростью реакции следили по падению давления моноксида углерода, подаваемого из балластного сосуда. В ходе проведения всей реакции в автоклаве поддерживали постоянные температуру 190°С и манометрическое давление 28 бар. После прекращения поглощения моноксида углерода из балластного сосуда автоклав отделяли от средства подачи газа и охлаждали. После охлаждения отбирали пробу газа для анализа и автоклав вентилировали. Жидкие компоненты извлекали и анализировали на жидкие побочные продукты по известным и зарекомендовавшим себя методам газовой хроматографии. Обнаруженные компоненты определяли количественно интегрированием пиков этих компонентов относительно внешнего эталона и выражали в массовых частях на миллион (ч./млн). Основным продуктом, получаемым в каждом из экспериментов с процессом карбонилирования, являлась уксусная кислота.

Скорость поглощения газа в некоторой точке по ходу реакции использовали для расчета скорости карбонилирования в виде числа молей израсходованного реагента на литр холодной дегазированной композиции в реакторе в час (молей/л/ч) при конкретном составе композиции в реакторе (вся композиция в реакторе в пересчете на объем холодного дегазированного материала).

Концентрацию метилацетата в ходе проведения реакции рассчитывали по исходному составу, предполагая, что на каждый моль монооксида углерода, который был израсходован, расходовали один моль метилацетата. Никакой поправки на органические компоненты в свободном пространстве над жидкостью в автоклаве не делали. По обычным методам газовой хроматографии проводили анализ газообразных побочных продуктов охлажденного газа в свободном пространстве над жидкостью и использовали результаты, рассчитанные в виде селективности в % в пересчете на потребление метилацетата для метана и потребление СО для CO2.

Примеры

Эксперимент А

Базовый эксперимент проводили с применением автоклава, в который загружали раствор ацетата иридия и раствор ацетата рутения (5% рутения, 18% воды и 72% уксусной кислоты). Количества компонентов, загруженных в автоклав, представлены в приведенной ниже таблице 1. Скорость реакции для расчетной реакционной композиции, включавшей 12% метилацетата, представлена в таблице 1.

Эксперимент Б

Эксперимент А повторяли, за исключением того, что в автоклав загружали раствор иодида галлия. Количества, загруженные в автоклав, приведены в таблице 1, а результаты этого эксперимента приведены в таблице 2.

Эксперимент В

Эксперимент А повторяли, за исключением того, что вместо рутениевого раствора в автоклав загружали раствор борной кислоты. Количества, загруженные в автоклав, приведены в таблице 1, а результаты этого эксперимента приведены в таблице 2.

Пример 1

Эксперимент А повторяли, за исключением того, что в автоклав загружали раствор борной кислоты и иодида галлия. Количества, загруженные в автоклав, представлены в таблице 1, а результаты этого эксперимента представлены в таблице 2.

Результаты в таблице 2 показывают, что сочетание бора и галлия промотирует катализируемый иридием процесс карбонилирования метанола без сколько-нибудь существенного ущерба для скорости карбонилирования.

Таблица 1 Содержимое автоклава Эксперимент Каталитическая система (молярное соотношение) Раствор ацетата Ir (г) Раствор ацетата Ru (г) Борная кислота (г) Иодид галлия (г) Метилацетат (г) Вода (г) Метилиодид (г) Уксусная кислота (г) Эксперимент А Ir/Ru (1:2) 6,6 6,87 0 0 48,0 12,64 13,33 65,28 Эксперимент Б Ir/Ga (1:2) 6,6 0 0 1,58 48,0 13,8 13,33 66,7 Эксперимент В Ir/B (1:2) 6,6 0 0,02 0 48,0 13,8 14,80 66,7 Пример 1 Ir/B/Ga (1:1,3:1,3) 9,9 0 0,22 1,57 48,0 13,17 14,80 64,65

Таблица 2 Данные скорости и о побочных продуктах Эксперимент Скорость при 12 мас.% МеОАс, моль/л/ч Пропионовая кислота (ч./млн) Селективность в отношении метана, % Селективность в отношении CO2, % Эксперимент А 19 400 1,5 1 Эксперимент Б 12,4 650 1,0 1,4 Эксперимент В 13,7 380 0,6 1,0 Пример 1 17 640 1,6 1,1

Похожие патенты RU2463287C2

название год авторы номер документа
СПОСОБ ПОЛУЧЕНИЯ УКСУСНОЙ КИСЛОТЫ 2007
  • Миллер Эндрью Джон
  • Пейн Марк Джон
RU2467999C2
ПРИМЕНЕНИЕ ИНДИЯ В КАЧЕСТВЕ СТАБИЛИЗАТОРА КАТАЛИТИЧЕСКОЙ СИСТЕМЫ В СПОСОБЕ ПОЛУЧЕНИЯ УКСУСНОЙ КИСЛОТЫ 2003
  • Кей Лесли Анн
  • Пейн Марк Джон
  • Пул Эндрью Дейвид
RU2413714C2
СПОСОБ ПОЛУЧЕНИЯ УКСУСНОЙ КИСЛОТЫ 2007
  • Миллер Эндрью Джон
  • Смит Стивен Джеймс
RU2458908C2
КАТАЛИЗАТОР И СПОСОБ ПОЛУЧЕНИЯ УКСУСНОЙ КИСЛОТЫ 2004
  • Антони Хейнес
  • Дейвид Джон Ло
  • Эндрью Миллер
  • Джордж Эрнест Моррис
  • Марк Джон Пейн
  • Джон Гленн Санли
RU2336262C2
СПОСОБ ПОЛУЧЕНИЯ УКСУСНОЙ КИСЛОТЫ КАТАЛИЗИРУЕМЫМ ИРИДИЕМ КАРБОНИЛИРОВАНИЕМ 1997
  • Эверт Ян Дитзель
  • Джон Глен Санли
  • Роберт Джон Ватт
RU2245870C2
СПОСОБ ПОЛУЧЕНИЯ УКСУСНОЙ КИСЛОТЫ КАРБОНИЛИРОВАНИЕМ МЕТАНОЛА И/ИЛИ ЕГО РЕАКЦИОННОСПОСОБНОГО ПРОИЗВОДНОГО 1997
  • Дитзель Эверт Ян
  • Санли Джон Глен
  • Ватт Роберт Джон
RU2184724C2
СПОСОБ ПОЛУЧЕНИЯ УКСУСНОЙ КИСЛОТЫ И КАТАЛИТИЧЕСКАЯ СИСТЕМА ДЛЯ ПОЛУЧЕНИЯ УКСУСНОЙ КИСЛОТЫ 1994
  • Карл Шерман Гарлэнд
  • Мартин Фрэнсис Гилес
  • Джон Гленн Санли
RU2132840C1
СПОСОБ ПОЛУЧЕНИЯ УКСУСНОЙ КИСЛОТЫ ПУТЕМ КАРБОНИЛИРОВАНИЯ 1996
  • Майкл Джеймс Бейкер
  • Карл Шермэн Гарлэнд
  • Мартин Фрэнсис Гайлс
  • Майкл Джеймс Маскетт
  • Георгиос Рафелетос
  • Стивен Джеймс Смит
  • Джон Гленн Санли
  • Роберт Джон Уатт
  • Брюс Лео Вилльямс
RU2160248C2
СПОСОБ ПОЛУЧЕНИЯ УКСУСНОЙ КИСЛОТЫ 2003
  • Маскетт Майкл Джеймс
RU2320638C2
СПОСОБ ПОЛУЧЕНИЯ УКСУСНОЙ КИСЛОТЫ 2003
  • Ло Дейвид Джон
  • Пул Эндрью Дейвид
  • Смит Стивен Джеймс
  • Санли Джон Гленн
RU2336263C2

Реферат патента 2012 года СПОСОБ ПОЛУЧЕНИЯ УКСУСНОЙ КИСЛОТЫ

Изобретение относится к усовершенствованному способу предотвращения выпадения каталитической системы в осадок при получении уксусной кислоты карбонилированием метанола и/или его реакционно-способного производного моноксидом углерода в по меньшей мере одной зоне реакции карбонилирования, содержащей жидкую реакционную композицию, включающую иридиевый катализатор карбонилирования, метилиодидный сокатализатор, воду в ограниченной концентрации, уксусную кислоту, метилацетат и в качестве промоторов бор и галлий. Комбинация бора и галлия в качестве промоторов позволяет избежать проблем с выпадением осадка, которые наблюдаются в промотируемых рутением реакциях, и при этом в то же время скорость реакции остается такой же в сравнении с традиционными рутениевыми промоторами. 14 з.п. ф-лы, 2 табл., 1 пр.

Формула изобретения RU 2 463 287 C2

1. Способ предотвращения выпадения каталитической системы в осадок при получении уксусной кислоты карбонилированием метанола и/или его реакционноспособного производного моноксидом углерода в по меньшей мере одной зоне реакции карбонилирования, содержащей жидкую реакционную композицию, включающую иридиевый катализатор карбонилирования, метилиодидный сокатализатор, воду в ограниченной концентрации, уксусную кислоту, метилацетат и в качестве промоторов бор и галлий.

2. Способ по п.1, в котором борный промотор и галлиевый промотор каждый содержится в жидкой реакционной композиции при молярном отношении промотора к иридию [от больше 0 до 15]:1.

3. Способ по п.1, в котором молярное соотношение иридия:бора:галлия находится в интервале 1:[от 1 до 10]:[от 1 до 10].

4. Способ по одному из пп.1-3, в котором концентрация каждого промотора в жидкой реакционной композиции составляет меньше 8000 млн-1.

5. Способ по п.1, в котором концентрация иридия в жидкой реакционной композиции находится в интервале от 100 до 6000 млн-1.

6. Способ по п.1, в котором вода содержится в жидкой реакционной композиции в концентрации в интервале от 0,1 до 20 мас.%.

7. Способ по п.6, в котором концентрация воды находится в интервале от 1 до 15 мас.%.

8. Способ по п.7, в котором концентрация воды находится в интервале от 1 до 10 мас.%.

9. Способ по п.1, в котором метилацетат содержится в жидкой реакционной композиции в концентрации в интервале от 1 до 70 мас.%.

10. Способ по п.1, в котором метилиодид содержится в жидкой реакционной композиции в концентрации в интервале от 1 до 20 мас.%.

11. Способ по п.1, в котором реакцию карбонилирования проводят под общим манометрическим давлением в интервале от 1 до 20 МПа.

12. Способ по п.1, в котором реакцию карбонилирования проводят при температуре в интервале от 150 до 220°С.

13. Способ по п.1, в котором реакцию карбонилирования проводят в единственной зоне реакции карбонилирования.

14. Способ по п.1, в котором реакцию карбонилирования проводят в по меньшей мере двух зонах реакции карбонилирования.

15. Способ по п.1, который осуществляют в виде непрерывного процесса.

Документы, цитированные в отчете о поиске Патент 2012 года RU2463287C2

Способ обработки целлюлозных материалов, с целью тонкого измельчения или переведения в коллоидальный раствор 1923
  • Петров Г.С.
SU2005A1
WO 2005105720 A1, 10.11.2005
Электролизер для регенерации травильных растворов хлорного железа 1978
  • Бондаренко Алексей Владимирович
  • Морозова Майя Ефимовна
  • Парыкин Владимир Семенович
  • Кукоз Людмила Александровна
  • Терентьева Вера Васильевна
  • Кукоз Виктор Федорович
SU749948A1
Печь для непрерывного получения сернистого натрия 1921
  • Настюков А.М.
  • Настюков К.И.
SU1A1
СПОСОБ ПОЛУЧЕНИЯ УКСУСНОЙ КИСЛОТЫ ПУТЕМ КАРБОНИЛИРОВАНИЯ 1996
  • Майкл Джеймс Бейкер
  • Карл Шермэн Гарлэнд
  • Мартин Фрэнсис Гайлс
  • Майкл Джеймс Маскетт
  • Георгиос Рафелетос
  • Стивен Джеймс Смит
  • Джон Гленн Санли
  • Роберт Джон Уатт
  • Брюс Лео Вилльямс
RU2160248C2
EP 0643034 A1, 15.03.1995.

RU 2 463 287 C2

Авторы

Миллер Эндрью Джон

Пейн Марк Джон

Даты

2012-10-10Публикация

2007-01-10Подача