СПОСОБ ПОЛУЧЕНИЯ УГЛЕВОДОРОДОВ C ИЗ МЕТАНА Российский патент 2012 года по МПК C07C2/80 C07C9/00 

Описание патента на изобретение RU2466977C1

Изобретение относится к области химической технологии, а именно к электрофизическому способу превращения метана в плазме барьерного разряда с получением смеси углеводородов C2+, являющихся исходным сырьем для получения полимерных материалов, органических продуктов и использующихся в качестве компонентов топлив для различных генераторов по производству электроэнергии.

Известен способ получения углеводородов С23 путем высокотемпературного окислительного превращения метана на гетерогенном катализаторе, включающий в свой состав ионы щелочного металла, марганца, вольфрама и оксид кремния [Пат. 2341507 Россия, от 19.07.2007, Способ получения углеводородов С23 // Дедов А.Г. и д.р.]. Превращение осуществляется при температуре на катализаторе 734- 910°С, селективность по углеводородам C23 достигает 87,6% (по углеводородам С2: этилен и этан составляет 81%) при конверсия метана в 20% (пример №16).

Недостатками данного способа являются: необходимость использования катализаторов и применение высоких температур.

Наиболее близким к предлагаемому способу является способ превращения метана в плазме электрического разряда [Shigeru Kado, Yasushi Sekine, Tomohiro Nozaki, Ken Okazaki // Catalysis Today 89, (2004), 47-55]. Приводятся данные по селективности образования углеводородов в барьерном разряде: С2 ~39% (этана ~35; этилена ~2,5; ацетилена ~1,5%), а так же углеводородов С35 ~32%, другие ~26% и углеродистые отложения ~3%. В результате сравнения коронного, искрового и барьерного разрядов отмечается, что в последнем конверсия метана выше, а доля углеродистых отложений ниже.

Основными недостатками данного способа являются: низкая селективность по углеводородам С2+ и углеродистые отложения, наблюдаемые в реакторе.

Задачей изобретения является технологическое решение, исключающее использование катализаторов и высоких температур из процесса получения углеводородов С2+, повышение селективности по углеводородам С2+ в плазме барьерного разряда и предотвращение образования углеродистых и смолистых веществ на стенках реактора.

Поставленная задача решается тем, что получение углеводородов С2+ осуществляют превращением метана в присутствии воды (жидкой и/или паров) под воздействием плазмы барьерного разряда в коаксиальном реакторе с одним диэлектрическим барьером при объемном расходе метана от 0,63 до 3,6 л·ч-1, воды от 1,3 до 6 мл·ч-1 при температуре от 25 до 120°С и времени контакта от -12 до 72 с.

Применение плазмы барьерного разряда позволяет превратить метан в углеводороды С2+ без применения катализатора, высокой температуры и при атмосферном давлении, что значительно упрощает способ получения углеводородов.

Способ иллюстрируется следующими примерами:

Пример №1. На фиг.1 представлена схема экспериментальной установки. Метан из баллона (1) направляется в блок подготовки реакционного газа (2), где смешивается с водой, далее смесь направляется в плазмохимический реактор (3), температура которого составляет ~25°С. Конструкция реактора включат диэлектрический барьер толщиной 2 мм и выполненный из кварцевого стекла, высоковольтный электрод (4), изготовленный из нержавеющей стали марки 12Х18Н10Т, и заземленный электрод (5), состоящий из нержавеющего листа толщиной 0,3 мм. Газовый зазор между электродами составляет 2 мм, длина разрядной зоны 9 см, объем разрядной зоны реактора равен 12 см3.

Объемный расход метана составляет 1,8 л·ч-1, расход воды равняется 6 мл·ч-1, время контакта реакционной смеси с разрядной зоной реактора составляет 24 с.

Возбуждение разряда осуществляют высоковольтными импульсами напряжения, подаваемыми от генератора (6), амплитуда которых составляет ~9,8 кВ; частота повторения импульсов напряжения ~11,7 кГц; активная мощность разряда равняется ~72 Вт. Измерения сделаны через блок деления напряжения (7) с помощью цифрового осциллографа (8), соединенного с компьютером (9). На фиг.3 представлена осциллограмма высоковольтных импульсов напряжения и тока разряда. Обработанный газ на выходе из реактора направляется на анализ в газовый хроматограф (10).

Блок подготовки реакционного газа (фиг.2а) состоит из перистальтического насоса (11), дозирующего воду при ~25°С, и смесителя (12), где происходит смешение метана и воды. Барьерный разряд обеспечивает равномерное распределение воды по стенкам реактора.

Реакционный газ состоит из метана - 99,3%, примеси воздуха - 0,1% и газообразных паров воды - 0,6%. Его превращение приводит к образованию целевых продуктов - углеводородов С2+, водорода и оксида углерода (IV), не наблюдается образование сажи или смолистых - углеродистых образований на стенках реактора.

Селективность образования углеводородов С2+ составила 97,3 моль %, из них С2 - 71,2 (этан 69,1; этилен 1,5; ацетилена 0,6); С3 - 20,3 (пропан 20,2; пропилен 0,1); C4 - 4,3 (изобутан 2,0; бутан 2,3); C5 - 1,5 и другие - 2,7 (H2 ~1,2; СО2 - 1,5). Конверсия метана составила 6,5 моль %.

Пример №2. Получение углеводородов C2+ осуществляют в условиях, аналогичных описанным в примере 1, за исключением объемного расхода подачи воды, который составляет 3 мл·ч-1.

Селективность по углеводородам С2+ составляет 98,3 моль % (этан 66,9; этилен - 2,2; ацетилен 0,8; пропан 20; пропилен 0,4; изобутан 2; бутан 4,4; пентаны 1,6), конверсия метана составила 7,6 моль %.

Пример №3. Получение углеводородов С2+ осуществляют в условиях, аналогичных описанным в примере 1, за исключением блока подготовки реакционного газа (фиг.2б). Метан из баллона с объемным расходом, равным 1,8 л·ч-1, проходит через емкость с водой (13) при ~25°С, насыщается парами воды и далее направляется в реактор, объемный расход воды при данных условиях составил ~1,3 мл·ч-1.

Селективность по углеводородам С2+ составляет 98,6 моль % (этан 64,9; этилен 3,7; ацетилен 1,2; пропан 22,5; пропилен 0,7; изобутан 1,9; бутан 2,3; пентаны 1,6), конверсия метана составила 7,0 моль %.

Пример №4. Получение углеводородов С2+ осуществляют в условиях, аналогичных описанным в примере 1, за исключением блока подготовки реакционного газа (фиг.2в). Метан из баллона направляют в смеситель (12), где он смешивается с парами воды, поступающими из печки (14), разогретой до 120°С, в которую подается вода с объемным расходом 3 мл·ч-1 с помощью перистальтического насоса (11). Далее парогазовая смесь по подогреваемому до 120°С тракту (15) поступает в реактор.

Селективность по углеводородам С2+ составляет 97,8 моль % (этан 68,1; этилен 1,8;

ацетилен 0,5; пропан 20,4; пропилен 0,2; изобутан 2,1; бутан 2,5; пентаны 1,5), конверсия метана составила 6,6 моль %.

Пример №5. Получение углеводородов С2+ осуществляют в условиях, аналогичных описанным в примере 1, за исключением объемного расхода метана, равного 3,6 л·ч-1, и времени контакта реакционного газа с разрядной зоной реактора - 12 с.

Селективность по углеводородам С3+ составляет 98,2 моль % (этан 66,7; этилен 2,0; ацетилен 0,9; пропан 21,5; пропилен 0,4; изобутан 1,9; бутан 3,1; пентаны 1,7), конверсия метана составила 3,4 моль %.

Пример №6. Получение углеводородов C2+ осуществляют в условиях, аналогичных описанным в примере 1, за исключением объемного расхода метана, который составляет 0,63 л·ч-1, времени контакта реакционного газа с разрядной зоной реактора - 72 с.

Селективность по углеводородам С2+ составляет 97,4 моль % (этан 62,8; этилен 2,1; ацетилен 0,8; пропан 22,0; пропилен 0,6; изобутан 3,6; бутан 4,5; пентаны 2,3), конверсия метана составила 11,1 моль %.

Пример №7. Получение углеводородов С2+ осуществляют в условиях, аналогичных описанным в примере 1, за исключением состава реакционного газа, в реактор поступает чистый метан с объемным расходом 1,8 л·ч-1.

Превращение метана в данных условиях приводит к образованию углеродистых - смолистых веществ на поверхности электродов в разрядной зоне.

Селективность продуктов по углеводородам С2+ составляет 98,8 моль % (этан 62,6; этилен 4,3; ацетилен 2,5; пропан 21,9; пропилен 1,4; изобутан 1,7; бутан 3,6; пентаны 1,3), конверсия метана составляет 6,3 моль %, расчет сделан без учета углеродистых - смолистых образований.

Как видно из примеров и таблицы, предложенный способ превращения метана в присутствии воды под воздействием плазмы барьерного разряда превосходит прототип тем, что получение углеводородов С2+ осуществляется без применения катализатора и высокой температуры. Превосходит аналог по селективности образования углеводородов С2+ и протекает без образования углеродистых - смолистых веществ на стенках реактора.

Наиболее удачное технологическое решение наблюдается в примере 6 для варианта смешения воды и метана, изображенного на фиг.2а, объемном расходе метана 0,63 л·ч-1, воды - 3 мл·ч-1, времени контакта реакционного газа с разрядной зоной реактора - 72 с. В этом случае достигается максимальная конверсия метана 11,1 моль %. Селективность по углеводородам С2+ составляет 97,4 моль %.

Похожие патенты RU2466977C1

название год авторы номер документа
СПОСОБ ПОЛУЧЕНИЯ НИЗШИХ ОЛЕФИНОВ 1994
  • Ерофеев В.И.
  • Восмериков А.В.
  • Кувшинов В.А.
  • Рябов Ю.В.
  • Бугаев С.П.
  • Ковальчук Б.М.
  • Шкатов В.Т.
RU2063415C1
СПОСОБ ПОЛУЧЕНИЯ НИЗШИХ ОЛЕФИНОВ 1994
  • Ерофеев В.И.
  • Восмериков А.В.
  • Кувшинов В.А.
  • Рябов Ю.В.
  • Бугаев С.П.
  • Ковальчук Б.М.
  • Шкатов В.Т.
RU2074230C1
СПОСОБ ОЧИСТКИ УГЛЕВОДОРОДНОГО ГАЗА ОТ СЕРОВОДОРОДА 2011
  • Кудряшов Сергей Владимирович
  • Рябов Андрей Юрьевич
  • Саушкин Виктор Алексеевич
RU2477649C1
СПОСОБ ПОЛУЧЕНИЯ АРОМАТИЧЕСКИХ УГЛЕВОДОРОДОВ (ВАРИАНТЫ) 2001
  • Ечевский Г.В.
  • Кихтянин О.В.
  • Климов О.В.
  • Дударев С.В.
  • Токтарев А.В.
  • Коденев Е.Г.
  • Кильдяшев С.П.
  • Пармон В.Н.
RU2188225C1
СПОСОБ ПРОВЕДЕНИЯ ГАЗОФАЗНЫХ РЕАКЦИЙ 2002
  • Фомин В.М.
  • Фомичев В.П.
  • Правдин С.С.
  • Поздняков Г.А.
  • Шепеленко В.Н.
  • Пармон В.Н.
  • Снытников В.Н.
  • Снытников В.Н.
  • Стояновский В.О.
RU2222569C2
СПОСОБ ПОЛУЧЕНИЯ АЦЕТИЛЕНА ИЗ МЕТАНА 2009
  • Сигаева Светлана Сергеевна
  • Лихолобов Владимир Александрович
  • Цырульников Павел Григорьевич
RU2409542C1
СПОСОБ ПЕРЕРАБОТКИ ПРИРОДНОГО ГАЗА В ЖИДКИЕ УГЛЕВОДОРОДЫ 2009
  • Новосёлов Юрий Николаевич
  • Суслов Алексей Иннокентьевич
RU2417250C1
НЕПРЕРЫВНЫЙ СПОСОБ СЕЛЕКТИВНОГО ПРЕВРАЩЕНИЯ ОКСИГЕНАТА В ПРОПИЛЕН С ИСПОЛЬЗОВАНИЕМ ТЕХНОЛОГИИ ПОДВИЖНОГО СЛОЯ И ГИДРОТЕРМИЧЕСКИ СТАБИЛИЗИРОВАННОЙ БИФУНКЦИОНАЛЬНОЙ КАТАЛИЗАТОРНОЙ СИСТЕМЫ 2006
  • Глоувер Брайан К.
  • Чен Джон К.
  • Паджадо Питер Р.
  • Вора Бипин В.
RU2409538C2
СПОСОБ И ИНТЕГРИРОВАННАЯ СИСТЕМА ДЛЯ ПРИГОТОВЛЕНИЯ НИЗШЕГО ОЛЕФИНОВОГО ПРОДУКТА 2010
  • Чуитер Лесли Эндрю
  • Ван Вестренен Ерун
  • Рамеш Раджарам
  • Винтер Ферри
RU2560185C2
СПОСОБ ПОЛУЧЕНИЯ, ПО МЕНЬШЕЙ МЕРЕ, ОДНОГО ЦЕЛЕВОГО ПРОДУКТА ПУТЕМ ЧАСТИЧНОГО ОКИСЛЕНИЯ И/ИЛИ ОКИСЛЕНИЯ В АММИАЧНОЙ СРЕДЕ ПРОПИЛЕНА 2006
  • Дифенбахер Армин
  • Хехлер Клаус
  • Адами Кристоф
  • Дитерле Мартин
RU2448946C2

Иллюстрации к изобретению RU 2 466 977 C1

Реферат патента 2012 года СПОСОБ ПОЛУЧЕНИЯ УГЛЕВОДОРОДОВ C ИЗ МЕТАНА

Изобретение относится к способу получения углеводородов С2+ превращением метана в коаксиальном реакторе с одним диэлектрическим барьером под действием плазмы барьерного разряда. Способ характеризуется тем, что превращение метана осуществляют в присутствии воды при объемном расходе метана от 0,63 до 3,6 л·ч-1, воды от 1,3 до 6 мл·ч-1 при температуре ее подачи в реактор от 25°С до 120°С, времени контакта реакционной смеси с разрядной зоной реактора от 12 до 72 с. Использование настоящего способа позволяет повысить селективность по углеводородам С2+ в плазме барьерного разряда и предотвращает образование углеродистых и смолистых веществ на стенках реактора. 7 пр., 3 ил., 1 табл.

Формула изобретения RU 2 466 977 C1

Способ получения углеводородов С2+ превращением метана в коаксиальном реакторе с одним диэлектрическим барьером под действием плазмы барьерного разряда, отличающийся тем, что превращение метана осуществляют в присутствии воды при объемном расходе метана от 0,63 до 3,6 л·ч-1, воды от 1,3 до 6 мл·ч-1 при температуре ее подачи в реактор от 25°С до 120°С, времени контакта реакционной смеси с разрядной зоной реактора от 12 до 72 с.

Документы, цитированные в отчете о поиске Патент 2012 года RU2466977C1

Shigeru Kado, Yasushi Sekine, Tomohiro Nozaki, Ken Okazaki, "Diagnosis of atmospheric pressure low temperature plasma and application to high efficient methane conversion", Catalysis Today 89, 2004, pages 47-55
СПОСОБ КОНВЕРСИИ ЛЕГКИХ УГЛЕВОДОРОДОВ В БОЛЕЕ ТЯЖЕЛЫЕ 1999
  • Медведев Ю.В.
  • Ремнев Г.Е.
  • Сметанин В.И.
  • Ширшов А.Н.
RU2149884C1
JP 0062164634 A, 21.07.1987
Способ моделирования трофической язвы конечности 1986
  • Шепотиновский Виктор Исакович
  • Киракосьян Саркис Завенович
  • Чернов Виктор Николаевич
SU1390634A1
RU 93057864 A, 20.01.1997
СПОСОБ ПОЛУЧЕНИЯ АЦЕТИЛЕНА И ОЛЕФИНОВ 0
SU172766A1

RU 2 466 977 C1

Авторы

Кудряшов Сергей Владимирович

Рябов Андрей Юрьевич

Даты

2012-11-20Публикация

2011-04-01Подача