Изобретение относится к способам экстракции и разделения меди(II), кобальта(II) и никеля(II) из слабокислых (рН>5) и аммиачных растворов и может быть использовано в гидрометаллургии цветных металлов, например, для переработки растворов аммиачного выщелачивания лома цветных металлов, концентратов руд, отходов цветной металлургии.
Известно извлечение меди(II) экстракцией из кислых и аммиачных растворов оксиоксимами [Ритчи Г.М., Эшбрук Л.В. Экстракция: Принципы и применение в металлургии. Пер. с англ. - М.: Металлургия, 1983. - С.117-148]. Недостатками оксиоксимов являются относительно небольшая емкость (по меди(II) в аммиачных средах не более 6-12 г/л), перенос аммиака при экстракции.
По другому способу экстракцию меди(II) из слабокислых и аммиачных сред осуществляют β-дикетонами, например, Ликс-54. Этот реагент незначительно переносит аммиак, имеет высокую емкость органической фазы (до 30-35 г/л по меди) [Mickler W., Uhlemann E. Liquid-liquid Extraction of Copper from Ammoniacal Solution with Cyclohexyl-Substituted β-dikеtonеs // Separation Science and Technology 1993. - V.28. - Issue 17-18. - P.2643-2650]. Однако β-дикeтоны весьма чувствительны к присутствию аммиака и солей аммония, что является их существенным недостатком.
Ближайшим аналогом (принятым за прототип) является способ экстракции меди(II), кобальта(II) и никеля(II) N',N'-диалкилгидразидами 2-этилгексановой кислоты, образующими комплексы с ионами меди(II), кобальта(II) и никеля(II) в слабокислой и аммиачной средах, среди которых наилучшими свойствами обладает N',N'-дигептилгидразид [Батуева Т.Д., Радушев А.В., Гусев В.Ю. Экстракция меди(II) из слабокислых и аммиачных сред N',N'-диалкилгидразидами алифатических карбоновых кислот // Журнал прикладной химии, 2009. - Т.82. - №11. - с.1850-1854].
Недостатком прототипа является относительно невысокая емкость экстрагента (по меди(II) не более 25-30 г/л), чувствительность к повышенным содержаниям аммиака и солей аммония, ограниченная растворимость в керосине.
Задачей изобретения является разработка способа экстракции меди(II), кобальта(II) и никеля(II) из слабокислых и аммиачных растворов с последующей реэкстракцией раствором минеральной кислоты, с использованием экстрагента с более высокой, чем у прототипа, емкостью органической фазы по меди(II), менее чувствительного к солям аммония, обладающего высокой растворимостью в углеводородных растворителях.
Для решения поставленной задачи предлагается следующее.
1. Способ экстракции ионов меди(II), никеля(II) и/или кобальта(II) из слабокислых и аммиачных водных растворов органическим реагентом с последующей реэкстракцией водным раствором минеральной кислоты, отличающийся тем, что в качестве органического реагента используют N',N'-диметилгидразиды α-разветвленных третичных карбоновых кислот общей формулы (I):
,
где R1 и R2 - алифатические радикалы с разветвленной цепью, содержащие в сумме от 9 до 18 атомов углерода
2. Способ по п.1, отличающийся тем, что органический реагент используют в углеводородном растворителе в концентрации 0,05-2 моль/л.
3. Способ no п.1, отличающийся тем, что при извлечении меди(II) экстракцию осуществляют в слабокислых или аммиачных растворах в интервале от рH 6 до содержания NН3 10 моль/л.
4. Способ по п.1, отличающийся тем, что при извлечении никеля(II) экстракцию осуществляют в аммиачных растворах в интервале рН 7-12.
5. Способ но п.1, отличающийся тем, при извлечении кобальта(II) экстракцию осуществляют в аммиачных растворах в интервале рН 8,5-10,3.
6. Способ по п.1, отличающийся тем, что при совместном извлечении никеля(II) и кобальта(II) экстракцию осуществляют в аммиачных растворах в интервале рН 7-12.
7. Способ но п.1, отличающийся тем, что при одновременном присутствии никеля(II) и кобальта(II) выделение никеля(II) осуществляют в аммиачных растворах интервале рH 7,5-9.
8. Способ по п.1, отличающийся тем, что при одновременном присутствии меди(II) и никеля(II) выделение меди(II) осуществляют в слабокислых или аммиачных растворах в интервале pH 6-7,5.
9. Способ по п.1, отличающийся тем, что при одновременном присутствии меди(II) и кобальта(II) выделение меди(II) осуществляют в слабокислых или аммиачных растворах в интервале рН 6-9.
10. Способ по п.1, отличающийся тем, что при одновременном присутствии меди(II), никеля(II) и кобальта(II), выделение меди(II) осуществляют в слабокислых или аммиачных растворах в интервале рН 6-7,5.
Заявляемые соединения можно получить известными способами: алкилированием ацилгидразидов, ацилированием соответствующего диалкилзамещенного гидразина хлорангидридами кислот и другими.
Синтез соединений общей формулы (I) проводили способом ацилирования соответствующего диалкилзамещенного гидразина хлорангидридами кислот.
Синтезированы N',N'-диметилгидразиды (ДМГД) общей формулы (I), где R1 и R2 - смесь алифатических радикалов с разветвленной цепью, содержащие в сумме от 9 до 18 атомов углерода. ДМГД-9 получен на основе узкой фракции кислот с суммой атомов углерода в радикалах R1 и R2, равной 9, а ДМГД-9-18 - на основе широкой фракции кислот с суммой углеродных атомов в радикалах R1 и R2, равной 9-18.
Соединения выделены в виде вязких масел, смешивающихся с органическими растворителями (керосином, нонаном и др.) в любых соотношениях и практически нерастворимых в воде, серной кислоте и аммиаке.
Пример 1
Синтез ДМГД-9
К 1 молю хлорангидрида α-разветвленных третичных карбоновых кислот узкой фракции со средним суммарным числом атомов углерода в молекуле 10 в 30 мл гексана прикапывали при перемешивании и охлаждении до 0°С 2 моля диметилгидразина в 15 мл гексана в течение 2 ч. Затем нагревали до комнатной температуры и отгоняли гексан. Остаток промывали водой, щелочью, снова водой до рН 7. Выход 85%.
Пример 2
Синтез ДМГД-9-18
Синтез проводился по методике, описанной в примере 1, с хлорангидридом α-разветвленных третичных карбоновых кислот широкой фракции с числом атомов углерода в молекуле 10-18. Выход 80%.
Строение соединений обшей формулы (I) подтверждено данными элементного анализа, хромато-масс-спектроскопией (снятыми на хромато-масс-спектрометре Agilent Technologies 6890N/5975B, колонка HP-5ms, 30 м·0,25 мм, 0.25 мкм, газ-носитель - гелий, ионизация электронным ударом (70 эВ)), ИК спектрами (снятыми на Фурье-спектрометре IFS 66/S Bruker), спектрами ЯМР 1H (полученными на спектрометре «MERCURY plus 300») и анализом на содержание основного вещества.
Спектральные характеристики заявляемых соединений ДМГД-9 и ДМГД-9-18 представлены в таблице 1.
Хромато-масс-спектроскопией показано, что время удерживания у группы ДМГД-9 составляет 7,25-7,7 мин. В усредненном спектре группы ДМГД-9 имеется пик молекулярного иона 214, соответствующий формуле С9Н19СОNНN(СН3)2 (С12Н26N2О). Фрагментация соответствует структуре CH3R1R2CONH(CH3)2. При этом хроматограмма по молекулярному иону 214 в общем следует хроматограмме по наиболее интенсивному иону 71.
ДМГД общей формулы (I) в качестве органического реагента используют в виде растворов в углеводородном растворителе в концентрации 0,05-2 моль/л.
При меньшем чем 9 общем числе углеродных атомов в радикалах R1 и R2 увеличиваются потери с водной фазой; при большем чем 18 - возрастает вязкость органической фазы экстрагента.
Применение менее чем 0,05 моль/л растворов ДМГД общей формулы (I) нецелесообразно из-за низкой емкости получаемых растворов экстрагентов. ДМГД смешиваются с углеводородными растворителями в любых соотношениях, однако при содержании ДМГД более 2 моль/л возрастает вязкость экстрактов.
Нa фиг.1 представлено влияние кислотности водной фазы на экстракцию Ni(II), Cu(II) и Co(II) 0,2 моль/л раствором ДМГД-9 в керосине. Vo:Vв=1:2, τ=1 мин.
Механизм экстракции
ДМГД общей формулы (I), (HL) являются амфотерными бидентатными лигандами. В слабокислых (pH>5) или аммиачных средах с цветными металлами (медью(II), никелем(II) и кобальтом(II)) они способны при комплексообразовании депротонироваться, образуя анионы L-, и экстрагировать, например, медь(II) в виде нейтрального внутрикомплексного соединения типа СuL2, согласно уравнениям (1) и (2).
Слабокислые или аммиачные растворы меди(II), или кобальта(II), или никеля(II) или их смесей перемешивают с 0,05-2 моль/л растворами ДМГД общей (формулы(I) в керосине. При этом извлекаемые ионы меди(II) переходят в органическую фазу. Затем медь(II) или кобаль(II) и/или никель(II) из органической фазы переводят в водную, перемешивая с растворами H2SO4, согласно уравнению (3):
Результаты экспериментов но использованию ДМГД общей формулы (I) для экстракции приведены в примерах, таблицах и на фигуре 1.
Пример 3
Экстракция меди(II) ДМГД-9
К 1 мл 0,1 моль/л раствора CuSO4 (в делительных воронках) прибавляли различные количества аммиака или H2SO4 для создания определенного рН раствора и доводили объем до 30 мл водой. После 1 мин встряхивания с 10 мл 0,05 моль/л растворов реагентов в керосине и разделения фаз определяли рНравн водной фазы и измеряли оптическую плотность экстрактов при 660 нм в кювете 1=2 на спектрофотометре СФ-2000. По полученным данным рассчитывали степень извлечения меди(II) в зависимости от рНравн или содержания NH3 по уравнению (4)
,
где Ai и Amax - оптические плотности экстрактов при данном рН.
Коэффициент распределения (D) рассчитывали по уравнению (5)
где Е - степень экстракции металла, %,
Vв и Vo - объемы водной и органической фаз, мл.
Полученные результаты даны в таблице 2 на фигуре 1.
Пример 4
Экстракция меди(II) ДМГД-9-18
К 7,5 мл 9,7·10-3 моль/л раствора CuSO4 (в делительных воронках) прибавляли различные количества аммиака или H2SO4 для создания определенного pH раствора и доводили объем до 15 мл водой. После 1 мин встряхивания с 5 мл 0,1 моль/л растворов ДМГД-9-18 в керосине и разделения фаз (15 мин) определяли рНравн водной слоя. Остаточное содержание меди(II) определяли на атомно-адсорбционном спектрометре. Рассчитывали степень экстракции по уравнению (6), а коэффициенты распределения D - по уравнению (5)
где Сисх - исходная концентрация металла в водном растворе, мг/л;
Сi - концентрация металла при заданной рН, мг/л.
Полученные результаты даны в таблице 3.
Из таблиц 2 и 3 следует, что экстрагенты ДМГД в сравнении с прототипом лучше извлекают медь(II); в аммиачной области извлечение практически количественное до 7-10 моль/л NH3.
Пример 5
Влияние солей аммония на экстракцию меди(II) ДМГД-9-18
К 7,5 мл 9,7·10-3 моль/л раствора CuSO4 (в делительных воронках) прибавляли 0,1 или 1 мл 1 моль/л аммиака для создания определенного рН раствора, разные количества (NH4)2SO4 и доводили объем до 15 мл водой. После 1 мин встряхивания с 5 мл 0,1 моль/л растворов реагентов в керосине и разделения фаз (5 мин) определяли рНравн водной фазы и остаточное содержание ионов меди(II), которое определяли на атомно-адсорбционном спектрометре. Рассчитывали степень экстракции по уравнению (6), а коэффициенты распределения D - по уравнению (5).
Результаты приведены в таблице 4, из которой видно, что присутствие до 1,6 моль/л (NH4)2SO4 (211 г/л) мало влияет на извлечение меди(II).
C прототипом при pH=8,5 и содержании (NH4)2SO4=0,5 моль/л (66 г/л) степень извлечения Сu2+ снижается на 59%, то есть заявляемые экстрагенты менее чувствительны к присутствию солей аммония.
Пример 6
Экстракции никеля(II) ДМГД-9
В делительную воронку помещали 1 мл 0,1 моль/л стандартного раствора никеля(II), расчетное количество раствора аммиака или Н2SO4 и воды до 10 мл, 5 мл 0,2 моль/л реагенга в керосине. Встряхивали воронку 3 мин и выдерживали до полного расслоения фаз 10 мин. Нижний слой отделяли, измеряли рНравн. Остаточное содержание никеля(II) определяли на атомно-адсорбционном спектрометре. Рассчитывали степень экстракции по уравнению (6), а коэффициенты распределения D - по уравнению (5).
Результаты представлены в таблице 5 и на фигуре 1, из которых видно, что никель(II) извлекается в интервале рН 7,5-12 на 94-99%.
Пример 7
Экстракция кобальта(II) ДМГД-9
В делительную воронку помещали 1 мл 0,1 моль/л стандартного раствора кобальта(II), расчетное количество раствора аммиака (или Н2SO4) и воды до 10 мл, 5 мл 0,2 моль/л реагента в керосине. Встряхивали воронку 3 мин и выдерживали для расслоения фаз 10 мин. Далее поступали, как описано в примере 4.
Результаты эксперимента представлены в таблице 6 и на фигуре 1, из которых видно, что кобальт(II) извлекается на 90-94% при pH в интервале 8,5-10,3.
Пример 8
Расчет коэффициентов разделения (β) пар Ni(II) - Co(II), Cu(II) - Ni(II), Cu(II) - Co(II)
Результаты экстракции Cu(II), Ni(II) и Co(II) (примеры 3, 6 и 7) 0,2 моль/л раствором ДМГД-9 в керосине представлены на фигуре 1.
Из фигуры 1 следует, что оптимальные рH экстракции этих ионов существенно отличаются, что подтверждается значениями коэффициентов разделения (β) пар этих элементов, рассчитанными по уравнению (7) при некоторых pH (таблица 7).
где и - коэффициенты разделения иона металлов M1 и M2.
Из таблицы 7 и фигуры 1 следует, что в слабокислой и аммиачной средах возможно разделение пар Ni(II) - Co(II), Cu(II) - Ni(II), Cu(II) - Co(II), Cu(II) - (Ni(II)+Co(II)) экстракцией с ДМГД-9.
Пример 9
Емкость органической фазы экстрагентов ДМГД по меди(II)
Аликвоты по 10 мл стандартного раствора с содержанием 54,6 и 29,9 г/л раствора меди(II) в виде аммиаката помещали в делительную воронку, добавляли по 10 мл 2 моль/л растворов ДМГД-9 в керосине и встряхивали 1 мин. После расслаивания образования 3-й фазы не наблюдали. Водную фазу отделяли и определяли остаточное содержание меди(II) на атомно-адсорбционном спектрометре. По полученным данным рассчитывали степень извлечения по уравнению (6) и емкость органической фазы по меди(II) как разность ее содержания в водной и органической фазах.
Результаты с ДМГД-9 представлены в таблице 8.
Из таблицы 8 видно, что емкость 2 моль/л растворов ДМГД-9 в керосине составляет 54 г/л по меди(II). Емкость 1,5 моль/л раствора ДМГД-9-18 в керосине составляет 45 г/л по меди(II); при повышении концентрации этого экстрагента до 2 моль/л в керосине и содержания меди(II) более 45 г/л наблюдается ухудшение разделения фаз.
Емкость по меди(II) прототипа меньше и составляет 25-30 г/л.
Пример 10
Реэкстракция меди(II) из органической фазы
Аликвоты по 10 мл органической фазы (0,2 моль/л раствор ДМГД-9-18 в керосине), содержащие по 6,3 г/л меди(II), встряхивали с равными объемами 0,1 и 0,2 моль/л H2SO4. После разделения фаз найдено в водной фазе комплексонометрически 6,1 и 6,25 г/л меди. Реэкстракция меди(II) в одну ступень составила соответственно 96,8 и 99,2%.
Таким образом, предлагаемый способ имеет следующие преимущества по сравнению с прототипом:
- совместимость с углеводородными растворителями в любых соотношениях;
- более высокая емкость органической фазы по меди(II);
- значительно меньшее влияние содержания аммиака и солей аммония на степень экстракции ионов металлов.
Vв:Vo=1:3. - 0,21 г/л, СHL=0,05 моль/л
Vв:Vо=1:3. , CHL=0,1 моль/л
Vв:Vo=1:3. , СHL=0,1 моль/л
Vo:Vв=1:2. , СHL=0,2 моль/л
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ИЗВЛЕЧЕНИЯ МЕДИ(II) ЭКСТРАКЦИЕЙ ИЗ ВОДНЫХ СЕРНОКИСЛЫХ РАСТВОРОВ, СОДЕРЖАЩИХ ДРУГИЕ МЕТАЛЛЫ | 2017 |
|
RU2668238C1 |
Способ извлечения кобальта из аммиачных растворов | 1986 |
|
SU1344802A1 |
Экстрагент для извлечения цветных металлов | 1982 |
|
SU1084323A1 |
СПОСОБ ЭКСТРАКЦИИ ЦИНКА (II), МЕДИ (II), КОБАЛЬТА (II), НИКЕЛЯ (II) ИЗ ВОДНЫХ РАСТВОРОВ | 2016 |
|
RU2666206C2 |
СПОСОБ ИЗВЛЕЧЕНИЯ НИКЕЛЯ (II) ИЗ ВОДНЫХ КИСЛЫХ РАСТВОРОВ, СОДЕРЖАЩИХ ДРУГИЕ МЕТАЛЛЫ | 2011 |
|
RU2485191C1 |
СПОСОБ ПЕРЕРАБОТКИ КОБАЛЬТСОДЕРЖАЩИХ ОТХОДОВ | 2012 |
|
RU2489509C1 |
Способ экстракции ионов меди (II) из медно-аммиачных водных растворов | 2019 |
|
RU2700532C1 |
СПОСОБ ЭКСТРАКЦИИ ИОНОВ МЕДИ (II) ИЗ АММИАЧНЫХ РАСТВОРОВ | 2014 |
|
RU2571741C1 |
Способ извлечения кадмия из аммиачных растворов | 1979 |
|
SU870472A1 |
Способ извлечения и разделенияКОбАльТА,МЕди и НиКЕля из АММиАчНыХРАСТВОРОВ | 1979 |
|
SU817086A1 |
Изобретение относится к способу экстракции ионов меди(II), никеля(II) и/или кобальта(II) из слабокислых и аммиачных водных растворов органическим реагентом с последующей реэкстракцией водным раствором минеральной кислоты. В качестве органического реагента используют N',N'-диметилгидразиды α-разветвленных третичных карбоновых кислот общей формулы (I) , где R1 и R2 - алифатические радикалы с разветвленной цепью, содержащие в сумме от 9 до 18 атомов углерода. Предлагаемый способ обеспечивает совместимость с углеводородными растворителями в любых соотношениях, характеризуется высокой емкостью органической фазы по меди(II), малым влиянием содержания аммиака и солей аммония на степень экстракции ионов металлов и может быть использован в гидрометаллургии цветных металлов. 9 з.п. ф-лы, 1 ил., 8 табл., 10 пр.
1. Способ экстракции ионов меди(II), никеля(II) и/или кобальта(II) из слабокислых и аммиачных водных растворов органическим реагентом с последующей реэкстракцией водным раствором минеральной кислоты, отличающийся тем, что в качестве органического реагента используют N',N'-диметилгидразиды α-разветвленных третичных карбоновых кислот общей формулы (I):
,
где R1 и R2 - алифатические радикалы с разветвленной цепью, содержащие в сумме от 9 до 18 атомов углерода.
2. Способ по п.1, отличающийся тем, что органический реагент используют в углеводородном растворителе в концентрации 0,05-2 моль/л.
3. Способ по п.1, отличающийся тем, что при извлечении меди(II) экстракцию осуществляют в слабокислых или аммиачных растворах в интервале от рН 6 до содержания NH3 10 моль/л.
4. Способ по п.1, отличающийся тем, что при извлечении никеля(II) экстракцию осуществляют в аммиачных растворах в интервале рН 7-12.
5. Способ по п.1, отличающийся тем, что при извлечении кобальта(II) экстракцию осуществляют в аммиачных растворах в интервале рН 8,5-10,3.
6. Способ по п.1, отличающийся тем, что при совместном извлечении никеля(II) и кобальта(II) экстракцию осуществляют в аммиачных растворах в интервале рН 7-12.
7. Способ по п.1, отличающийся, тем, что при одновременном присутствии никеля(II) и кобальта(II) выделение никеля(II) осуществляют в аммиачных растворах в интервале рН 7,5-9.
8. Способ по п.1, отличающийся тем, что при одновременном присутствии меди(II) и никеля(II) выделение меди(II) осуществляют в слабокислых или аммиачных растворах в интервале рН 6-7,5.
9. Способ по п.1, отличающийся тем, что при одновременном присутствии меди(II) и кобальта(II) выделение меди(II) осуществляют в слабокислых или аммиачных растворах в интервале рН 6-9.
10. Способ по п.1, отличающийся тем, что при одновременном присутствии меди(II), никеля(II) и кобальта(II) выделение меди(II) осуществляют в слабокислых или аммиачных растворах в интервале рН 6-7,5.
БАТУЕВА Т.Д | |||
и др | |||
Экстракция меди(II) из слабокислых и аммиачных сред N',N'-диалкилгидразидами алифатических карбоновых кислот | |||
- Журнал прикладной химии, 2009, т.82, Вып.11, с.1850-1854 | |||
СПОСОБ ИЗВЛЕЧЕНИЯ ИОНОВ МЕДИ(II) ИЗ АММИАЧНЫХ СРЕД С ИСПОЛЬЗОВАНИЕМ БЕТА-N-ОКСИЭТИЛГИДРАЗИДОВ АЛИФАТИЧЕСКИХ КАРБОНОВЫХ КИСЛОТ | 2009 |
|
RU2422437C2 |
СПОСОБ ИЗВЛЕЧЕНИЯ ИЗ ВОДНЫХ СУЛЬФАТНЫХ РАСТВОРОВ ИОНОВ ВОЛЬФРАМА(VI) И/ИЛИ МОЛИБДЕНА (VI) | 2009 |
|
RU2405049C1 |
Способ извлечения цветных металлов из кислых или щелочных растворов экстракцией | 1983 |
|
SU1136485A1 |
US 3932505, 13.01.1976. |
Авторы
Даты
2013-01-20—Публикация
2011-10-25—Подача