Изобретение относится к гидроакустике и может быть использовано для измерения координат источника звуковых волн в мелком море в пассивном режиме с помощью акустических приемников, установленных на морском дне, координаты которых и угловое положение считаются известными.
Известно устройство [Щуров В.А. Векторная акустика океана. Владивосток: Дальнаука, 2003. С.31.] для измерения азимутального угла на источник звука в пассивном режиме, содержащее установленные на дне приемник звукового давления и трехкомпонентный приемник вектора колебательной скорости, которые в совокупности образуют акустический комбинированный приемник, а также датчики углового положения локальной системы координат, связанной с акустическим приемником, относительно географической системы координат. В этом устройстве измеряются компоненты вектора интенсивности Ix, Iy, Iz в локальной ортогональной системе координат, связанной с акустическим комбинированным приемником, а направление на источник звука определяется по формуле:
где φ - азимутальный угол в горизонтальной плоскости, отсчитываемый от оси X локальной системы координат, связанной с акустическим комбинированным приемником. При необходимости результаты измерений углового положения источника звука в локальной системе координат пересчитываются в пеленг.
Аналогичным образом можно определить угол места, если акустический комбинированный приемник расположен в ближней зоне источника звука
Недостатком данного измерительного устройства является большая погрешность измерения угла места, если измерительная система работает в мелком море, поскольку в этом случае формула (2) дает большую погрешность и не может быть использована для измерения угла места источника звука. Кроме того, одиночный комбинированный приемник принципиально не может быть использован для определения горизонта источника звука.
Известно устройство [Патент РФ на полезную модель №82972, МПК, H04B 10/00, 30.12.2008 г.], в котором для устранения этих недостатков используется многоканальный цифровой комбинированный гидроакустический комплекс, содержащий N акустических комбинированных приемников, каждый из которых состоит из гидрофона, трехкомпонентного векторного приемника и соединенных с ними усилителей, телеметрический блок, вход которого соединен с выходом акустических комбинированных приемников, включающий делители напряжения, аналого-цифровую преобразующую схему, единую схему электронного мультиплексирования, модулятор и оптический излучатель, связанный оптической линией связи с оптическим ресивером, а также систему сбора, обработки и отображения информации, содержащую блок сбора обработки и отображения информации, вход которого соединен с выходом оптического ресивера, устройство доступа к цифровым сетям передачи данных, вход которого соединен с выходом блока сбора обработки и отображения информации, и формирователь диаграммы направленности, вход и выход которого соединены со входом и выходом блока сбора обработки и отображения информации. В этом устройстве n акустических комбинированных приемников и программный модуль для формирования диаграммы направленности в режиме реального времени образуют гидроакустическую антенну, которая обладает повышенной помехоустойчивостью и малой погрешностью измерения азимутального угла и пеленга на источник звука по сравнению с первым аналогом. При определенной конфигурации элементов антенны погрешность измерения угла места и горизонта источника может быть уменьшена, но остается достаточно большой при работе измерительного комплекса в мелком море. Данное устройство является наиболее близким к заявленному изобретению.
Недостатком этого устройства является невозможность значительного увеличения числа акустических комбинированных приемников и апертуры антенны из-за значительных дисперсионных искажений акустического сигнала при его распространении в мелком море. Вследствие таких искажений алгоритмы фазирования сигналов, принятых отдельными элементами антенны, которые положены в основу функционирования формирователя диаграммы направленности, и сами алгоритмы определением азимутального угла на источник звука по формуле (1) и угла места по формуле (2) становятся неэффективными. В результате дальность действия измерительной антенны не увеличивается, а погрешность измерения пеленга не уменьшается при увеличении апертуры антенны. Кроме того, недостатком этого устройства является большая погрешность измерения горизонта источника с использованием формулы (2) при работе измерительного комплекса в мелком море.
В основу настоящего изобретения поставлена задача уменьшения погрешности измерения азимутального угла и горизонта источника, а также увеличение дальности действия при работе измерительного комплекса в мелком море путем увеличения апертуры его измерительной системы. Для достижения поставленной цели предлагается использовать корреляционные свойства звукового поля по отношению к вертикальной компоненте вектора интенсивности. В соответствии с результатами работы [Щуров В.А., Кулешов В.П., Ткаченко Е.С. Вихри акустической интенсивности в мелком море // Техническая акустика. 2010. №12. http://www.ejta.org] вертикальная компонента вектора интенсивности обладает явно выраженной периодической структурой в звуковом поле, создаваемом источником звука в мелком море на расстояниях, существенно превышающих размер ближней зоны rб=H2/λ (Н - глубина моря, λ - длина волны на средней частоте рабочего диапазона частот). Это означает высокую коррелированность звуковых полей по отношению к вертикальной компоненте вектора интенсивности, а также связь горизонта источника с параметрами этой структуры.
Для реализации поставленной задачи в гидроакустическом измерительном комплексе, содержащем n акустических комбинированных приемников, каждый из которых состоит из гидрофона, трехкомпонентного векторного приемника и соединенных с ними усилителей, телеметрический блок, вход которого соединен с выходом акустических комбинированных приемников, включающий делители напряжения, аналого-цифровую преобразующую схему, единую схему электронного мультиплексирования и оптический излучатель, связанный оптической линией связи с оптическим ресивером, систему сбора, обработки и отображения информации, содержащую блок сбора, обработки и отображения информации, вход которого соединен с выходом оптического ресивера, и устройство доступа к цифровым сетям передачи данных, вход которого соединен с выходом блока сбора, обработки и передачи информации, посредством N акустических комбинированных приемников образуется донная вертикально ориентированная эквидистантная антенна, в которой расстояние между акустическими комбинированными приемниками равно заданной погрешности определения вертикальной координаты (горизонта) источника звука Δz, a число приемников N=H/Δz.
Кроме того, в систему сбора, обработки и отображения информации дополнительно введены N-канальный блок вычисления вертикальной компоненты вектора интенсивности, вход которого соединен с выходом блока сбора, обработки и отображения информации, блок определения максимума вертикальной компоненты вектора интенсивности, вход которого соединен с выходом N-канального блока вычисления вертикальной компоненты вектора интенсивности, N-канальный блок вычисления горизонтальных компонент вектора интенсивности, вход которого соединен с выходом блока сбора, обработки и отображения информации, N-канальный блок вычисления азимутального угла, вход которого соединен с первым выходом N-канального блока вычисления горизонтальных компонент вектора интенсивности, блок вычисления усредненного азимутального угла, первый вход которого соединен с выходом N-канального блока вычисления азимутального угла, а второй вход соединен со вторым выходом N-канального блока вычисления горизонтальных компонент вектора интенсивности, причем усредненный азимутальный угол определяется формулой:
где φn, Ixn, Iyn - азимутальный угол и компоненты вектора интенсивности, относящиеся к n-му акустическому комбинированному приемнику, а за горизонт источника принимается горизонт акустического комбинированного приемника, которому соответствует максимум вертикальной компоненты вектора интенсивности, определяемый в блоке определения максимума вертикальной компоненты вектора интенсивности.
В предлагаемом комплексе существенными признаками, общими с прототипом, являются:
- N акустических комбинированных приемников, каждый из которых состоит из гидрофона, трехкомпонентного векторного приемника и соединенных с ними усилителей;
- телеметрический блок, включающий делители напряжения, аналого-цифровую преобразующую схему, единую схему электронного мультиплексирования, модулятор и оптический излучатель, связанный оптической линией связи с оптическим ресивером;
- система сброса, обработки и передачи информации, содержащая блок сбора, обработки и передачи информации, и устройство доступа к цифровым сетям передачи данных.
Отличительными существенными признаками являются:
- посредством акустических комбинированных приемников образуется донная вертикально ориентированная эквидистантная антенна, в которой расстояние между акустическими комбинированными приемниками равно заданной погрешности определения вертикальной координаты (горизонта) источника звука Δz, а число приемников N=H/Δz;
- N-канальный блок вычисления вертикальной компоненты вектора интенсивности, вход которого соединен с выходом блока сбора, обработки и отображения информации;
- блок определения максимума вертикальной компоненты вектора интенсивности, вход которого соединен с выходом N-канального блока вычисления вертикальной компоненты вектора интенсивности;
- N-канальный блок вычисления горизонтальных компонент вектора интенсивности, вход которого соединен с выходом блока сбора, обработки и отображения информации;
- N-канальный блок вычисления азимутального угла, вход которого соединен с первым выходом N-канального блока вычисления горизонтальных компонент вектора интенсивности;
- блок вычисления усредненного азимутального угла, первый вход которого соединен с выходом N-канального блока вычисления азимутального угла, а второй вход соединен со вторым выходом N-канального блока вычисления горизонтальных компонент вектора интенсивности;
- усредненный азимутальный угол определяется формулой:
,
где φn, Ixn, Iyn - азимутальный угол и компоненты вектора интенсивности, относящиеся к n-у акустическому комбинированному приемнику;
- горизонт источника принимается равным горизонту акустического комбинированного приемника, которому соответствует максимум вертикальной компоненты вектора интенсивности, определяемый в блоке определения максимума вертикальной компоненты вектора интенсивности.
Таким образом, именно такая совокупность существенных признаков заявленного устройства позволяет создать гидроакустический измерительный комплекс для измерения азимутального угла на источник звука и горизонта источника, уменьшить погрешность измерения и увеличить дальность действия самого комплекса при работе в мелком море.
Новизна предлагаемого устройства заключается в том, что в нем в качестве измерительного комплекса используется донная вертикально ориентированная эквидистантная антенна, в которой расстояние между акустическими комбинированными приемниками равно заданной погрешности определения вертикальной координаты (горизонта) источника звука Δz, а в качестве рабочего сигнала используется вертикальная компонента вектора интенсивности, которая обладает наибольшей пространственной коррелированностью в звуковом поле в мелком море и имеет причинно-следственную связь с горизонтом источника. Именно эта особенность позволяет существенно уменьшить погрешность измерения и увеличить дальность действия всего устройства.
На основании изложенного можно заключить, что совокупность существенных признаков заявленного изобретения имеет причинно-следственную связь с достигнутым техническим результатом.
Следовательно, заявляемое техническое решение является новым, обладает изобретательским уровнем, т.е. оно явным образом не следует из известных технических решений и пригодно для использования.
Сущность изобретения поясняется чертежами, где на фиг.1 представлена донная вертикально ориентированная эквидистантная антенна, т.е. геометрия расположения акустических приемников и источника звука относительно локальной системы координат, на фиг.2 представлена блок-схема гидроакустического измерительного комплекса.
Заявленный гидроакустический комплекс для измерения азимутального угла на источник звука и горизонта источника в мелком море содержит донную вертикально ориентированную эквидистантную антенну I, телеметрический блок II и систему III сбора, обработки и передачи информации.
Донная вертикально ориентированная эквидистантная антенна I образуется посредством N акустических комбинированных приемников, каждый из которых состоит из гидрофона, трехкомпонентного векторного приемника и соединенных с ними усилителей (на чертеже не показаны). Геометрия расположения акустических приемников и источника звука относительно локальной системы координат поясняется фиг.1.
Телеметрический блок включает: делители напряжения 1, аналого-цифровую преобразующую схему 2, единую схему 3 электронного мультиплексирования, модулятор 4 и оптический излучатель 5, связанный оптической линией 6 связи с оптическим ресивером 7.
Система III сбора, обработки и передачи информации содержит блок 8 сбора, обработки и передачи информации, N-канальный блок 9 вычисления вертикальной компоненты вектора интенсивности, вход которого соединен с выходом блока 8, блок 10 определения максимума вертикальной компоненты вектора интенсивности, вход которого соединен с выходом N-канального блока 9 вычисления вертикальной компоненты вектора интенсивности, N-канальный блок 11 вычисления горизонтальных компонент вектора интенсивности, вход которого соединен с выходом блока 8 сбора, обработки и отображения информации, N-канальный блок 12 вычисления азимутального угла, вход которого соединен с первым выходом N-канального блока 11 вычисления горизонтальных компонент вектора интенсивности, блок 13 вычисления усредненного азимутального угла, первый вход которого соединен с выходом N-канального блока 12 вычисления азимутального угла, а второй вход соединен со вторым выходом N-канального блока 11 вычисления горизонтальных компонент вектора интенсивности.
Комплекс работает следующим образом.
Звуковая волна, излучаемая источником звука, принимается акустическими комбинированными приемниками, образующими донную вертикально ориентированную эквидистантную антенну I. Все сигналы с выходов акустических приемников поступают на вход телеметрического блока II, а после прохождения через делители напряжения 1, аналого-цифровую преобразующую схему 2 и единую схему 3 электронного мультиплексирования преобразуются в поток цифровой информации, поступающий через модулятор 4, оптический излучатель 5 и оптическую линию 6 связи на оптический ресивер 7. С выхода оптического ресивера 7 информация поступает в цифровом виде на вход блока 8 сбора, обработки и отображения информации, находящегося в системе III сбора, обработки и отображения информации. В блоке 8 сбора, обработки и отображения информации сигналы вновь разделяются по отдельным каналам звукового давления и компонент вектора колебательной скорости и поступают в N-канальный блок 9 вычисления спектральной плотности Si(ω, ri)=p(ω, ri)Vz *(ω, ri) - вертикального потока мощности. В соответствии с результатами работы [Щуров В.А., Кулешов В.П., Ткаченко Е.С. Вихри акустической интенсивности в мелком море // Техническая акустика. 2010. №12. http://www.ejta.org.] именно эти величины обладают наибольшей пространственной коррелированностью и наиболее простой связью с горизонтом источника в звуковом поле, формируемом в мелком море набором нормальных волн. Эти свойства поля спектральной плотности вертикального потока мощности используются при дальнейшей обработке акустической информации. Эта обработка сводится к вычислению вертикальной компоненты вектора интенсивности Iz(ω, ri)=ReSi(ω, ri) в блоке 9 для каждого из N акустических комбинированных приемников с последующим нахождением максимального из этих значений в блоке 10. За горизонт источника звука принимается горизонт акустического комбинированного приемника, которому соответствует максимальное значение вертикальной компоненты вектора интенсивности, а соответствующая информация поступает на первый вход устройства доступа к цифровым сетям передачи данных 14. Та же сигнальная информация с выхода блока 8 сбора, обработки и отображения информации поступает на вход N-канального блока 11 вычисления горизонтальных компонент вектора интенсивности, с первого выхода которого численные значения горизонтальных компонент вектора интенсивности Ix(ω, ri), Iy(ω, ri) поступают на вход N-канального блока 12 вычисления азимутального угла. Численные оценки азимутального угла на источник звука, вычисленные по формуле (1) для каждого из N акустических комбинированных приемников, усредняются в блоке 13 по формуле (3), а усредненные значения азимутального угла передаются на второй вход устройства доступа к цифровым сетям передачи данных 14. Сама процедура усреднения отдельных значений азимутального угла позволяет уменьшить случайную составляющую погрешности измерения этой величины.
Использование: в качестве гидроакустического комплекса для измерения азимутального угла и горизонта источника звука в мелком море. Сущность: гидроакустический измерительный комплекс содержит N акустических комбинированных приемников, каждый из которых состоит из гидрофона, трехкомпонентного векторного приемника и соединенных с ними усилителей, телеметрический блок, включающий делители напряжения, аналого-цифровую преобразующую схему, единую схему электронного мультиплексирования, модулятор и оптический излучатель, связанный оптической линией связи с оптическим ресивером, систему сбора, обработки и передачи информации, содержащую блок сбора, обработки и передачи информации и устройство доступа к цифровым сетям передачи данных. N акустических комбинированных приемников образуют донную вертикально ориентированную эквидистантную антенну, в которой расстояние между акустическими комбинированными приемниками равно заданной погрешности определения вертикальной координаты (горизонта) источника звука Δz, а число приемников N=H/Δz (где Н - глубина моря). В систему сбора, обработки и отображения информации дополнительно введены N-канальный блок вычисления вертикальной компоненты вектора интенсивности, блок определения максимума вертикальной компоненты вектора интенсивности, N-канальный блок вычисления горизонтальных компонент вектора интенсивности, N-канальный блок вычисления азимутального угла, блок вычисления усредненного азимутального угла. Технический результат - уменьшение погрешности измерения азимутального угла и горизонта источника, а также увеличение дальности действия при работе измерительного комплекса в мелком море путем увеличения апертуры его измерительной системы. 2 ил.
Гидроакустический измерительный комплекс, содержащий N акустических комбинированных приемников, каждый из которых состоит из гидрофона, трехкомпонентного векторного приемника и соединенных с ними усилителей, телеметрический блок, вход которого соединен с выходом акустических комбинированных приемников, включающий делители напряжения, аналого-цифровую преобразующую схему, единую схему электронного мультиплексирования, модулятор и оптический излучатель, связанный оптической линией связи с оптическим ресивером, система сбора, обработки и передачи информации, содержащая блок сбора, обработки и передачи информации, вход которого соединен с выходом оптического ресивера, и устройство доступа к цифровым сетям передачи данных, отличающийся тем, что в измерительном комплексе посредством N акустических комбинированных приемников образуется донная вертикально ориентированная эквидистантная антенна, в которой расстояние между акустическими комбинированными приемниками равно заданной погрешности определения вертикальной координаты (горизонта) источника звука Δz, а число приемников N=H/Δz (где Н - глубина моря), в систему сбора, обработки и отображения информации дополнительно введены N-канальный блок вычисления вертикальной компоненты вектора интенсивности, вход которого соединен с выходом блока сбора, обработки и отображения информации, блок определения максимума вертикальной компоненты вектора интенсивности, вход которого соединен с выходом N-канального блока вычисления вертикальной компоненты вектора интенсивности, а выход соединен с первым входом устройства доступа к цифровым сетям передачи данных, N-канальный блок вычисления горизонтальных компонент вектора интенсивности, вход которого соединен с выходом блока сбора, обработки и отображения информации, N-канальный блок вычисления азимутального угла, вход которого соединен с первым выходом N-канального блока вычисления горизонтальных компонент вектора интенсивности, блок вычисления усредненного азимутального угла, первый вход которого соединен с выходом N-канального блока вычисления азимутального угла, второй вход соединен со вторым выходом N-канального блока вычисления горизонтальных компонент вектора интенсивности, а выход соединен со вторым входом устройства доступа к цифровым сетям передачи данных, причем усредненный азимутальный угол определяется формулой
,
где φn, Ixn, Iyn - азимутальный угол и горизонтальные компоненты вектора интенсивности, относящиеся к n-му акустическому комбинированному приемнику, а за горизонт источника звука принимается горизонт акустического комбинированного приемника, которому соответствует максимум вертикальной компоненты вектора интенсивности, определяемый в блоке определения максимума вертикальной компоненты вектора интенсивности.
Способ формирования диаграмм направленности N-элементной линейной эквидистантной антенной решетки | 1985 |
|
SU1327026A1 |
СПОСОБ ПЕЛЕНГОВАНИЯ ИСТОЧНИКА ИЗЛУЧЕНИЯ И АНТЕННАЯ СИСТЕМА ДЛЯ ЕГО РЕАЛИЗАЦИИ | 1999 |
|
RU2168738C1 |
СПОСОБ ОПРЕДЕЛЕНИЯ ПЕЛЕНГА НА ИСТОЧНИК ИЗЛУЧЕНИЯ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 1998 |
|
RU2158430C2 |
US 7184670 B2, 15.11.2001. |
Авторы
Даты
2013-02-27—Публикация
2011-10-03—Подача