Изобретение относится к гидроакустике и может быть использовано для обнаружения движущегося источника звука, измерения координат источника звуковых волн в мелком море в пассивном режиме с помощью акустических приемников, установленных на морском дне, координаты которых и угловое положение считаются известными.
Известен способ обнаружения шумящих объектов (заявка на изобретение №95113277, МПК G01S 15/00, 1998 г.), включающий прием сигналов шумоизлучения двумя разнесенными в пространстве антеннами, спектральный анализ принятых сигналов, измерение взаимного спектра между сигналами, принятыми этими антеннами, измерение автокорреляционной функции, нормирование измеренной функции к максимуму, измерение основного лепестка нормированной функции при ее уровнях от 0.1 до 0.8 от максимального значения с шагом 0.1, вычисление отношения предыдущего измерения к последующему на каждом шаге, сравнение полученных результатов с расчетными и при отличии измеренных значений от расчетных принятие решения о наличии нескольких целей на одном направлении, причем о числе целей судят по числу шагов, имеющих это отличие.
Недостатком данного способа обнаружения является малая дальность обнаружения при работе в мелком море. Кроме того, данный способ обнаружения принципиально не может быть использован для определения горизонта источника звука, что представляет определенный практический интерес. При работе обнаружителя в мелком море в присутствии помехи сама задача обнаружения источника звука и поддержания с ним акустического контакта представляет серьезную проблему, которая решается только при достаточно большом отношении сигнал-помеха и при весьма ограниченной дальности обнаружения источника сигнала.
Известно устройство (патент РФ на полезную модель №82972, МПК, H04B 10/00, 2008 г.), в котором для устранения этих недостатков используется многоканальный цифровой комбинированный гидроакустический комплекс, содержащий N акустических комбинированных приемников, каждый из которых состоит из гидрофона, трехкомпонентного векторного приемника и соединенных с ними усилителей, телеметрический блок, вход которого соединен с выходом акустических комбинированных приемников, включающий делители напряжения, аналого-цифровую преобразующую схему, единую схему электронного мультиплексирования, модулятор и оптический излучатель, связанный оптической линией связи с оптическим ресивером, а также систему сбора, обработки и отображения информации, содержащую блок сбора обработки и отображения информации, вход которого соединен с выходом оптического ресивера, устройство доступа к цифровым сетям передачи данных, вход которого соединен с выходом блока сбора обработки и отображения информации, и формирователь диаграммы направленности, вход и выход которого соединены со входом и выходом блока сбора обработки и отображения информации. В каждом комбинированном приемнике этого устройства измеряются компоненты вектора интенсивности Ix, Iy, Iz в локальной ортогональной системе координат, связанной с акустическим комбинированным приемником, а направление на источник звука определяется по формуле
где φ - азимутальный угол в горизонтальной плоскости, отсчитываемый от оси X локальной системы координат, связанной с акустическим комбинированным приемником. При необходимости результаты измерений углового положения источника звука в локальной системе координат пересчитываются в пеленг.
Аналогичным образом можно определить угол места, если акустический комбинированный приемник расположен в ближней зоне источника звука
В этом устройстве N акустических комбинированных приемников и программный модуль для формирования диаграммы направленности в режиме реального времени образуют гидроакустическую антенну, которая обладает повышенной помехоустойчивостью и малой погрешностью измерения координат источник звука по сравнению с аналогом [1]. При определенной конфигурации элементов антенны дальность обнаружения источника звука может быть увеличена, а погрешность измерения координат источника может быть уменьшена при работе измерительного комплекса в мелком море. Данное устройство является наиболее близким к заявленному изобретению.
Недостатком этого устройства является невозможность значительного увеличения числа акустических комбинированных приемников и апертуры антенны из-за значительных дисперсионных искажений акустического сигнала при его распространении в мелком море. Вследствие таких искажений алгоритмы фазирования сигналов, принятых отдельными элементами антенны, которые положены в основу функционирования формирователя диаграммы направленности, и сами алгоритмы определением азимутального угла на источник звука по формуле (1) и угла места по формуле (2) становятся неэффективными. В результате дальность обнаружения измерительной антенны не увеличивается, а погрешность измерения пеленга не уменьшается при увеличении апертуры антенны. Кроме того, недостатком этого устройства является большая погрешность измерения горизонта источника при работе измерительного комплекса в мелком море и малая дальность обнаружения источника звука.
В основу настоящего изобретения поставлена задача увеличения дальности обнаружения источника звука, а также уменьшения погрешности измерения координат источника при работе измерительного комплекса в мелком море путем увеличения апертуры его измерительной системы и использования корреляционных свойств звукового поля движущегося источника звука. Для достижения поставленной цели предлагается использование корреляционных свойств звукового поля по отношению к вертикальной компоненте вектора интенсивности, которая генерируется комплексным угловым спектром движущегося источника. В соответствии с результатами работы (Щуров В.А., Кулешов В.П., Ткаченко Е.С. Вихри акустической интенсивности в мелком море // Техническая акустика. 2010. №12. ) вертикальная компонента вектора интенсивности обладает явно выраженной периодической структурой в звуковом поле, создаваемом движущимся источником звука в мелком море на расстояниях, существенно превышающих размер ближней зоны rб=Н2/λ (Н - глубина моря, λ - длина волны на средней частоте рабочего диапазона частот). Это означает высокую коррелированность звуковых полей по отношению к вертикальной компоненте вектора интенсивности, а также простую связь горизонта источника с измеряемыми параметрами этой величины. Кроме того, уровень вертикальной составляющей вектора интенсивности в шумах судоходства убывает экспоненциально быстро с глубиной, поэтому шумы судоходства оказывают минимальное влияние на измерение этой компоненты звукового поля в случае, если источник звука, подлежащий обнаружению, является заглубленным.
Для реализации поставленной задачи в гидроакустическом измерительном комплексе, содержащем N акустических комбинированных приемников, каждый из которых состоит из гидрофона, трехкомпонентного векторного приемника и соединенных с ними усилителей, телеметрический блок, вход которого соединен с выходом акустических комбинированных приемников, включающий делители напряжения, аналого-цифровую преобразующую схему, единую схему электронного мультиплексирования и оптический излучатель, связанный оптической линией связи с оптическим ресивером, систему сбора, обработки и отображения информации, содержащую блок сбора, обработки и отображения информации, вход которого соединен с выходом оптического ресивера, и устройство доступа к цифровым сетям передачи данных, вход которого соединен с выходом блока сбора, обработки и передачи информации, посредством N акустических комбинированных приемников образуются две донные вертикально ориентированные эквидистантные антенны, в каждой из которых число элементов равно N/2, а локальные координатные системы всех акустических комбинированных приемников совмещены. При этом расстояние между вертикальными антеннами 1>λн, где λн - длина волны на нижней частоте рабочего диапазона шумоизлучения источника звука, расстояние между акустическими комбинированными приемниками равно заданной погрешности определения вертикальной координаты (горизонта) источника звука Δz, а число приемников в каждой антенне N/2=h12/Δz, h12=z1-z2, z1, z2 нижний и верхний горизонты вероятного нахождения источника звука, образующие коридор обнаружения.
Кроме того, в систему сбора, обработки и отображения информации дополнительно введены N-канальный блок вычисления вертикальной компоненты вектора интенсивности, вход которого соединен с выходом блока сбора, обработки и отображения информации, блок определения максимума вертикальной компоненты вектора интенсивности, вход которого соединен с выходом N-канального блока вычисления вертикальной компоненты вектора интенсивности, N-канальный блок вычисления горизонтальных компонент вектора интенсивности, вход которого соединен с выходом блока сбора, обработки и отображения информации, N-канальный блок вычисления азимутальных углов φ1n, φ2n, вход которого соединен с первым выходом N-канального блока вычисления горизонтальных компонент вектора интенсивности, блок вычисления усредненных азимутальных углов, первый вход которого соединен с выходом N-канального блока вычисления азимутальных углов, а второй вход соединен со вторым выходом N-канального блока вычисления горизонтальных компонент вектора интенсивности, блок вычисления горизонтальных координат источника звука, вход которого соединен с выходом блока вычисления усредненных азимутальных углов, причем усредненные азимутальные углы определяется формулами
где φn, Ix,1n, Iy,1n - азимутальный угол и компоненты вектора интенсивности, относящиеся к n-ому акустическому комбинированному приемнику, индексы 1, 2 относятся к двум вертикально ориентированным эквидистантным антеннам, горизонтальные координаты источника звука в локальной системе координат (x, y), совмещенной с локальной системой координат акустических комбинированных приемников, определяются формулами
а за горизонт источника принимается горизонт акустического комбинированного приемника, которому соответствует максимум вертикальной компоненты вектора интенсивности, определяемый в блоке определения максимума вертикальной компоненты вектора интенсивности. Информация с выхода блока вычисления горизонтальных координат источника звука и блока определения максимума вертикальной компоненты вектора интенсивности поступает на первый и второй входы устройства доступа к цифровым сетям передачи данных.
Кроме того, для увеличения дальности обнаружения движущегося источника звука и поддержания с ним акустического контакта в систему сбора, обработки и отображения информации дополнительно введены N/2-канальный вычислитель взаимного спектра, входы которого соединены с выходами N-канального блока вычисления вертикальной компоненты вектора интенсивности, N/2-канальный вычислитель взаимной корреляционной функции, входы которого соединены с выходами N/2-канального вычислителя взаимного спектра, сумматор, вход которого соединен с выходами N/2-канального вычислителя взаимной корреляционной функции, блок измерения максимума взаимной корреляционной функции, вход которого соединен с выходом сумматора, блок нормирования взаимной корреляционной функции, входы которого соединены с выходами сумматора и блока измерения максимума взаимной корреляционной функции, блок вычисления ширины основного лепестка нормированной взаимной корреляционной функции на уровнях от 0.1 до 0.8 от максимального значения с шагом 0.1, вход которого соединен с выходом блока нормирования взаимной корреляционной функции, вычислитель отношения предыдущего измерения к последующему на каждом шаге, вход которого соединен с выходом блока вычисления ширины основного лепестка нормированной взаимной корреляционной функции на уровнях от 0.1 до 0.8 от максимального значения с шагом 0.1, компаратор, первый вход которого соединен с выходом блока вычислителя отношения предыдущего измерения к последующему, блок задания расчетных значений отношений предыдущего измерения к последующему, выход которого соединен со вторым входом компаратора, блок принятия решения об обнаружении источников звука и их числе, вход которого соединен с выходом компаратора, а выход соединен с третьим входом устройства доступа к цифровым сетям передачи данных.
В предлагаемом комплексе существенными признаками, общими с прототипом, являются:
- N акустических комбинированных приемников, каждый из которых состоит из гидрофона, трехкомпонентного векторного приемника и соединенных с ними усилителей;
- телеметрический блок, включающий делители напряжения, аналого-цифровую преобразующую схему, единую схему электронного мультиплексирования, модулятор и оптический излучатель, связанный оптической линией связи с оптическим ресивером;
- система сброса, обработки и передачи информации, содержащая блок сбора, обработки и передачи информации, и устройство доступа к цифровым сетям передачи данных.
Отличительными существенными признаками являются:
- акустическими комбинированными приемниками образуются две донные вертикально ориентированные эквидистантные антенны, в каждой из которых содержится N/2 комбинированных приемников, расстояние между вертикальными антеннами 1>λн, где λн - длина волны на нижней частоте рабочего диапазона шумоизлучения источника звука, расстояние между акустическими комбинированными приемниками равно заданной погрешности определения вертикальной координаты (горизонта) источника звука Δz, а число приемников в каждой антенне N/2=h12/Δz, h12=z1-z2, z1, z2 нижний и верхний горизонты вероятного нахождения источника звука, образующие коридор обнаружения;
- N-канальный блок вычисления вертикальной компоненты вектора интенсивности, вход которого соединен с выходом блока сбора, обработки и отображения информации;
- блок определения максимума вертикальной компоненты вектора интенсивности, вход которого соединен с выходом N-канального блока вычисления вертикальной компоненты вектора интенсивности;
- N-канальный блок вычисления горизонтальных компонент вектора интенсивности, вход которого соединен с выходом блока сбора, обработки и отображения информации;
- N-канальный блок вычисления азимутальных углов, вход которого соединен с первым выходом N-канального блока вычисления горизонтальных компонент вектора интенсивности;
- блок вычисления усредненных азимутальных углов, первый вход которого соединен с выходом N-канального блока вычисления азимутальных углов, а второй вход соединен со вторым выходом N-канального блока вычисления горизонтальных компонент вектора интенсивности, а усредненные азимутальные углы определяются формулой
где φп, Ixn, Iyn - азимутальный угол и компоненты вектора интенсивности, относящиеся к n-y акустическому комбинированному приемнику, индексы 1, 2 относятся к двум вертикально ориентированным эквидистантным антеннам;
- блок вычисления горизонтальных координат источника звука, которые определяются по формулам
- вертикальная координата источника звука принимается равной вертикальной координате акустического комбинированного приемника, которому соответствует максимум вертикальной компоненты вектора интенсивности, определяемый в блоке определения максимума вертикальной компоненты вектора интенсивности;
- N/2 - канальный вычислитель взаимного спектра, входы которого соединены с выходами N-канального блока вычисления вертикальной компоненты вектора интенсивности;
- N/2 - канальный вычислитель взаимной корреляционной функции, входы которого соединены с выходами N/2-канального вычислителя взаимного спектра;
- сумматор, вход которого соединен с выходами N/2-канального вычислителя взаимной корреляционной функции;
- блок измерения максимума взаимной корреляционной функции, вход которого соединен с выходом сумматора;
- блок нормирования взаимной корреляционной функции, входы которого соединены с выходами сумматора и блока измерения максимума взаимной корреляционной функции;
- блок вычисления ширины основного лепестка нормированной взаимной корреляционной функции на уровнях от 0.1 до 0.8 от максимального значения с шагом 0.1, вход которого соединен с выходом блока нормирования взаимной корреляционной функции;
- вычислитель отношения предыдущего измерения к последующему на каждом шаге, вход которого соединен с выходом блока вычисления ширины основного лепестка нормированной взаимной корреляционной функции на уровнях от 0.1 до 0.8 от максимального значения с шагом 0.1;
- компаратор, первый вход которого соединен с выходом блока вычислителя отношения предыдущего измерения к последующему;
- блок задания расчетных значений отношений предыдущего измерения к последующему, выход которого соединен со вторым входом компаратора;
- блок принятия решения об обнаружении источников звука и их числе, вход которого соединен с выходом компаратора, а выход соединен с третьим входом устройства доступа к цифровым сетям передачи данных.
Таким образом, именно такая совокупность существенных признаков заявленного устройства позволяет создать гидроакустический измерительный комплекс для обнаружения движущегося заглубленного источника звука и измерения его координат, уменьшить погрешность измерения и увеличить дальность действия самого комплекса при работе в мелком море.
Новизна предлагаемого устройства заключается в том, что в нем в качестве измерительного комплекса используются две донные вертикально ориентированные эквидистантные антенны, в каждой из которых содержится N/2 комбинированных приемников, расстояние между вертикальными антеннами l>λн, где λн - длина волны на нижней частоте рабочего диапазона шумоизлучения источника звука, расстояние между акустическими комбинированными приемниками равно заданной погрешности определения вертикальной координаты (горизонта) источника звука Δz, а число приемников в каждой антенне N/2=h12/Δz, h12=z1-z2, z1, z2 нижний и верхний горизонты вероятного нахождения источника звука, образующие коридор обнаружения, а в качестве рабочего сигнала используется вертикальная компонента вектора интенсивности. Именно эта характеристика обладает наибольшей пространственной коррелированностью в звуковом поле в мелком море, в наименьшей степени подвержена влиянию помех судоходства, если источник звука является заглубленным, и имеет причинно-следственную связь с горизонтом источника.
Кроме того, для определения горизонтальных координат источника звука используется возможность определения пеленга на источник звука с помощью одиночного комбинированного приемника и избыточная информация об угловом положении источника звука, позволяющая минимизировать погрешность их определения. Именно эта особенность позволяет существенно уменьшить погрешность измерения и увеличить дальность действия всего устройства.
На основании изложенного можно заключить, что совокупность существенных признаков заявленного изобретения имеет причинно-следственную связь с достигнутым техническим результатом.
Сущность изобретения поясняется чертежами, где на фиг.1 представлены две донные вертикально ориентированные эквидистантные антенны, разнесенные на базовое расстояние 1, на фиг.2 представлена блок-схема гидроакустического измерительного комплекса.
Заявленный гидроакустический комплекс для обнаружения движущегося заглубленного источника звука и измерения его координат в мелком море содержит N-элементную донную антенну I, телеметрический блок II и систему III сбора, обработки и передачи информации.
Донная антенна I состоит из двух вертикально ориентированных эквидистантных антенн, в каждой из которых содержится N/2 комбинированных приемников, каждый из которых состоит из гидрофона, трехкомпонентного векторного приемника и соединенных с ними усилителей (на чертеже не показаны). Геометрия расположения акустических приемников и источника звука относительно локальной системы координат поясняется фиг.1.
Телеметрический блок II включает: делители напряжения 1, аналого-цифровую преобразующую схему 2, единую схему 3 электронного мультиплексирования, модулятор 4 и оптический излучатель 5, связанный оптической линией 6 связи с оптическим ресивером 7.
Система III сбора, обработки и передачи информации содержит блок 8 сбора, обработки и передачи информации, N-канальный блок 9 вычисления вертикальной компоненты вектора интенсивности, вход которого соединен с выходом блока 8, блок 10 определения максимума вертикальной компоненты вектора интенсивности, вход которого соединен с выходом блока 9. Та же сигнальная информация с выхода блока 8 сбора, обработки и отображения информации поступает на вход N-канального блока 11 вычисления горизонтальных компонент вектора интенсивности, с выхода которого численные значения горизонтальных компонент вектора интенсивности Ix(ω,ri), Iy(ω,ri) поступают на вход N-канального блока 12 вычисления азимутальных углов. Численные оценки азимутальных углов на источник звука, вычисленные по формуле (1) для каждого из N акустических комбинированных приемников, усредняются в блоке 13 по формуле (3), а усредненные значения азимутальных углов передаются на вход блока 14 вычисления горизонтальных координат источника звука. С выхода блока 14 вычисления горизонтальных координат источника звука информация поступает на второй вход устройства 15 доступа к цифровым сетям передачи данных, а с первым входом последнего соединен выход блока 9.
Кроме того, сигналы с выхода N-канального блока 9 вычисления спектральной плотности вертикального потока мощности поступают на вход N/2-канального блока вычисления взаимного спектра 16, с выхода которого сигналы поступают на вход N/2-канального блока 17 вычисления взаимной корреляционной функции, выход которого соединен со входом сумматора 18, выполняющего суммирование корреляционных функций. Суммарная взаимная корреляционная функция В(τ) с первого выхода сумматора 18 поступает на вход блока 19 измерения максимума взаимной корреляционной функции, выход которого и второй выход сумматора 18 соединены со входом блока 20 нормирования взаимной корреляционной функции. После процедуры нормирования взаимной корреляционной функции сигнал с выхода блока 20 поступает на вход блока 21 вычисления ширины основного лепестка нормированной взаимной корреляционной функции на уровнях от 0.1 до 0.8 от максимального значения с шагом 0.1, выход которого соединен со входом вычислителя отношения предыдущего измерения к последующему на каждом шаге. Численная оценка этого отношения сравнивается в компараторе 22 с расчетными значениями этого отношения, которые формируются в блоке 23 и соответствуют фоновым значениям этих величин в отсутствие источников звука. По результату сравнения измеренных значений с расчетными значениями в блоке 24 принятия решений делается вывод о наличии источников звука и их числе, а информация с выхода блока 24 принятия решений поступает на третий вход устройства 15 доступа к цифровым сетям передачи данных.
Комплекс работает следующим образом.
Звуковая волна, излучаемая источником звука, принимается акустическими комбинированными приемниками, образующими две донные вертикально ориентированные эквидистантные антенны I(I), I(2). Все сигналы с выходов акустических приемников поступают на вход телеметрического блока II, а после прохождения через делители напряжения 1, аналого-цифровую преобразующую схему 2 и единую схему 3 электронного мультиплексирования преобразуются в поток цифровой информации, поступающий через модулятор 4, оптический излучатель 5 и оптическую линию 6 связи на оптический ресивер 7. С выхода оптического ресивера 7 информация поступает в цифровом виде на вход блока 8 сбора, обработки и отображения информации, находящегося в системе III сбора, обработки и отображения информации. В блоке 8 сбора, обработки и отображения информации сигналы вновь разделяются по отдельным каналам звукового давления и компонент вектора колебательной скорости и поступают в N-канальный блок 9 вычисления спектральной плотности
Кроме того, для увеличения дальности обнаружения движущегося источника звука выполняется попарная взаимно-корреляционная обработка сигналов, принимаемых комбинированными приемниками, принадлежащими двум вертикальным антеннам и находящимися на одном горизонте. С этой целью сигналы с выхода N-канального блока 9 вычисления спектральной плотности
где ri, rj - координаты комбинированных приемников, принадлежащих двум вертикальным антеннам и находящихся на одном горизонте, с выхода которого сигналы поступают на вход N/2-канального блока 17 вычисления взаимной корреляционной функции
где ωв - верхняя частота рабочего диапазона частот шумоизлучения источника звука, выход которого соединен со входом сумматора 18, выполняющего суммирование корреляционных функций
Для дальнейшего решения задачи обнаружения источников звука и определения их числа суммарная взаимная корреляционная функция В(τ) с первого выхода сумматора 18 поступает на вход блока 19 измерения максимума взаимной корреляционной функции, выход которого и второй выход сумматора 18 соединены со входом блока 20 нормирования взаимной корреляционной функции. После процедуры нормирования взаимной корреляционной функции сигнал с выхода блока 20 поступает на вход блока 21 вычисления ширины основного лепестка нормированной взаимной корреляционной функции на уровнях от 0.1 до 0.8 от максимального значения с шагом 0.1, выход которого соединен со входом вычислителя отношения предыдущего измерения к последующему на каждом шаге. Численная оценка этого отношения сравнивается в компараторе 22 с расчетными значениями этого отношения, которые формируются в блоке 23 и соответствуют фоновым значениям этих величин в отсутствие источников звука. По результату сравнения измеренных значений с расчетными значениями в блоке 24 принятия решений делается вывод о наличии источников звука и их числе, а информация с выхода блока 24 принятия решений поступает на третий вход устройства 15 доступа к цифровым сетям передачи данных.
Изобретение относится к гидроакустике и может быть использовано для обнаружения движущегося заглубленного источника звука, измерения координат источника звуковых волн в мелком море в пассивном режиме с помощью акустических приемников, установленных на морском дне, координаты которых и угловое положение считаются известными. Технический результат - уменьшить погрешность измерения и увеличить дальность действия при работе измерительного комплекса в мелком море. Гидроакустический измерительный комплекс содержит N акустических комбинированных приемников, каждый из которых состоит из гидрофона, трехкомпонентного векторного приемника и соединенных с ними усилителей, телеметрический блок, включающий делители напряжения, аналого-цифровую преобразующую схему, единую схему электронного мультиплексирования, модулятор и оптический излучатель, связанный оптической линией связи с оптическим ресивером, систему сбора, обработки и передачи информации, содержащую блок сбора, обработки и передачи информации и устройство доступа к цифровым сетям передачи данных. Посредством акустических комбинированных приемников образуются две донные вертикально ориентированные эквидистантные антенны, в каждой из которых число элементов равно N/2, а локальные координатные системы всех акустических комбинированных приемников совмещены. При этом расстояние между вертикальными антеннами 1>λн, где λн - длина волны на нижней частоте рабочего диапазона шумоизлучения источника звука, расстояние между акустическими комбинированными приемниками равно заданной погрешности определения вертикальной координаты (горизонта) источника звука Δz, а число приемников в каждой антенне N/2=h12/Δz, h12=z1-z2, z1, z2 нижний и верхний горизонты вероятного нахождения источника звука, образующие коридор обнаружения. Кроме того, в систему сбора, обработки и отображения информации дополнительно введены N-канальный блок вычисления вертикальной компоненты вектора интенсивности, блок определения максимума вертикальной компоненты вектора интенсивности, N-канальный блок вычисления горизонтальных компонент вектора интенсивности, N-канальный блок вычисления азимутальных углов φ1n, φ2n, блок вычисления усредненных азимутальных углов, блок вычисления горизонтальных координат источника звука. Информация с выхода блока вычисления горизонтальных координат источника звука и блока определения максимума вертикальной компоненты вектора интенсивности поступает на первый и второй входы устройства доступа к цифровым сетям передачи данных. Для увеличения дальности обнаружения движущегося источника звука и поддержания с ним акустического контакта в систему сбора, обработки и отображения информации дополнительно введены N/2-канальный вычислитель взаимного спектра сигналов для пар акустических комбинированных приемников, расположенных на одном горизонте и принадлежащих двум донным вертикально ориентированным эквидистантным антеннам, N/2-канальный вычислитель взаимной корреляционной функции, сумматор, блок измерения максимума взаимной корреляционной функции, блок нормирования взаимной корреляционной функции, блок вычисления ширины основного лепестка нормированной взаимной корреляционной функции, вычислитель отношения предыдущего измерения к последующему на каждом шаге, компаратор, блок задания расчетных значений отношений предыдущего измерения к последующему, блок принятия решения об обнаружении источников звука и их числе. 2 ил.
Гидроакустический измерительный комплекс, содержащий N акустических комбинированных приемников, каждый из которых состоит из гидрофона, трехкомпонентного векторного приемника и соединенных с ними усилителей, телеметрический блок, вход которого соединен с выходом акустических комбинированных приемников, включающий делители напряжения, аналого-цифровую преобразующую схему, единую схему электронного мультиплексирования, модулятор и оптический излучатель, связанный оптической линией связи с оптическим ресивером, систему сбора, обработки и передачи информации, содержащую блок сбора, обработки и передачи информации, вход которого соединен с выходом оптического ресивера, и устройство доступа к цифровым сетям передачи данных, отличающийся тем, что в измерительном комплексе посредством N акустических комбинированных приемников образуются две донные вертикально ориентированные эквидистантные антенны, в каждой из которых число элементов равно N/2, локальные координатные системы всех акустических комбинированных приемников совмещены, расстояние между вертикальными антеннами l>λн, где λн
- длина волны на нижней частоте рабочего диапазона шумоизлучения источника звука, расстояние между акустическими комбинированными приемниками равно заданной погрешности определения вертикальной координаты (горизонта) источника звука Δz, а число приемников в каждой антенне N/2-h12/Δz, h12=z1-z2, z1, z2 нижний и верхний горизонты вероятного нахождения источника звука, образующие коридор обнаружения, в систему сбора, обработки и отображения информации дополнительно введены N-канальный блок вычисления вертикальной компоненты вектора интенсивности, вход которого соединен с выходом блока сбора, обработки и отображения информации, блок определения максимума вертикальной компоненты вектора интенсивности, вход которого соединен с выходом N-канального блока вычисления вертикальной компоненты вектора интенсивности, а выход соединен с первым входом устройства доступа к цифровым сетям передачи данных, N-канальный блок вычисления горизонтальных компонент вектора интенсивности, вход которого соединен с выходом блока сбора, обработки и отображения информации, N-канальный блок вычисления азимутальных углов, вход которого соединен с первым выходом N-канального блока вычисления горизонтальных компонент вектора интенсивности, блок вычисления усредненных азимутальных углов, первый вход которого соединен с выходом N-канального блока вычисления азимутальных углов, второй вход соединен со вторым выходом N-канального блока вычисления горизонтальных компонент вектора интенсивности, блок вычисления горизонтальных координат источника звука, вход которого соединен с выходом блока вычисления усредненных азимутальных углов, а выход соединен со вторым входом устройства доступа к цифровым сетям передачи данных, N/2-канальный вычислитель взаимного спектра, входы которого соединены с выходами N-канального блока вычисления вертикальной компоненты вектора интенсивности, N/2-канальный вычислитель взаимной корреляционной функции, входы которого соединены с выходами N/2-канального вычислителя взаимного спектра, сумматор, вход которого соединен с выходами N/2-канального вычислителя взаимной корреляционной функции, блок измерения максимума взаимной корреляционной функции, вход которого соединен с выходом сумматора, блок нормирования взаимной корреляционной функции, входы которого соединены с выходами сумматора и блока измерения максимума взаимной корреляционной функции, блок вычисления ширины основного лепестка нормированной взаимной корреляционной функции на уровнях от 0.1 до 0.8 от максимального значения с шагом 0.1, вход которого соединен с выходом блока нормирования взаимной корреляционной функции, вычислитель отношения предыдущего измерения к последующему на каждом шаге, вход которого соединен с выходом блока вычисления ширины основного лепестка нормированной взаимной корреляционной функции на уровнях от 0.1 до 0.8 от максимального значения с шагом 0.1, компаратор, первый вход которого соединен с выходом блока вычислителя отношения предыдущего измерения к последующему, блок задания расчетных значений отношений предыдущего измерения к последующему, выход которого соединен со вторым входом компаратора, блок принятия решения об обнаружении источников звука и их числе, вход которого соединен с выходом компаратора, а выход соединен с третьим входом устройства доступа к цифровым сетям передачи данных, причем усредненные азимутальные углы определяются формулами
где φn, Ixn, Iyn - азимутальный угол и горизонтальные компоненты вектора интенсивности, относящиеся к n-у акустическому комбинированному приемнику, индексы 1,2 относятся к двум вертикально ориентированным эквидистантным антеннам, горизонтальные координаты источника звука в локальной системе координат (x, y), совмещенной с локальной системой координат акустических комбинированных приемников, определяются формулами
;
вертикальная координата источника звука принимается равной вертикальной координате акустического комбинированного приемника, которому соответствует максимум вертикальной компоненты вектора интенсивности, определяемый в блоке определения максимума вертикальной компоненты вектора интенсивности, а в качестве признака обнаружения движущегося источника звука и их числа принимается степень отличия измеренных значений отношения предыдущего измерения к последующему измерению ширины нормированной функции взаимной корреляции на уровнях от 0.1 до 0.8 с шагом 0.1 от расчетных значений этого отношения, вычисленных для фоновой шумовой помехи.
ГИДРОАКУСТИЧЕСКИЙ КОМПЛЕКС ДЛЯ ИЗМЕРЕНИЯ КООРДИНАТ ИСТОЧНИКА ЗВУКА В МЕЛКОМ МОРЕ | 2011 |
|
RU2484492C1 |
ГИДРОАКУСТИЧЕСКИЙ КОМПЛЕКС ДЛЯ ИЗМЕРЕНИЯ АЗИМУТАЛЬНОГО УГЛА И ГОРИЗОНТА ИСТОЧНИКА ЗВУКА В МЕЛКОМ МОРЕ | 2011 |
|
RU2476899C1 |
ГИДРОАКУСТИЧЕСКИЙ КОМПЛЕКС ДЛЯ ИЗМЕРЕНИЯ АЗИМУТАЛЬНОГО УГЛА НА ИСТОЧНИК ЗВУКА В МЕЛКОМ МОРЕ | 2011 |
|
RU2474836C1 |
СПОСОБ ПЕЛЕНГОВАНИЯ ИСТОЧНИКА ИЗЛУЧЕНИЯ И АНТЕННАЯ СИСТЕМА ДЛЯ ЕГО РЕАЛИЗАЦИИ | 1999 |
|
RU2168738C1 |
US2009059724 A1, 05.03.2009 |
Авторы
Даты
2015-01-10—Публикация
2013-06-26—Подача