ФИЛЬТРУЮЩИЙ МАТЕРИАЛ, СПОСОБ ЕГО ПОЛУЧЕНИЯ И ПРИМЕНЕНИЕ Российский патент 2013 года по МПК B01D39/00 B82B3/00 A62B7/00 

Описание патента на изобретение RU2477644C1

Изобретение относится к области получения фильтрующих материалов из нановолокон, предпочтительно используемых для тонкой очистки воздуха от высокодисперсных аэрозолей, в частности, в аэрозольных фильтрах, респираторах и лицевых масках.

Известен сорбционно-фильтрующий материал для бактериальных фильтров из волокон политрифторстирола или полисульфона на основе бис-фенола А и 4,4-дихлорфенилсульфона, или поли-2,6-диметилфениленоксида, или поли-2,6-дифенилфениленоксида, или полидифениленфталида, или полиоксидифениленфталида, в котором угол разориентации макромолекул в волокне не более 30°, диаметр волокна 0,1-10 мкм и общая пористость 80-98%. Способ получения этого материала включает электростатическое формование волокнистого нетканого материала из раствора полимера в органическом растворителе из группы: дихлорэтан, циклогексанон, трихлорэтилен, метилэтилкетон, при динамической вязкости раствора 0,1-30 Пуаз, электропроводности раствора 10-4-10-7 Ом-1см-1 и объемном расходе раствора 10-5-10-1 см3/с в расчете на один капилляр. (RU 2055632, 10.09.96)

Недостатком материала является дефицитность исходного сырья и недостаточная эффективность улавливания аэрозолей из-за относительно большого диаметра волокон.

Известен фильтрующий волокнистый материал, полученный методом электростатического формования из раствора смеси полимеров, включающей сополимер стирола с акрилонитрилом, отличающийся тем, что волокна выполнены из смеси сополимера стирола с акрилонитрилом и полиуретаном, при их массовом соотношении (50-95):(50-5), соответственно, с диаметром 1-10 мкм, при этом материал характеризуется массой единицы площади 20-70 г/м2 и аэродинамическим сопротивлением 3-30 Па при скорости потока воздуха 1 см/с. Способ получения этого фильтрующего волокнистого материала представляет собой электростатическое формование волокон из раствора смеси полимеров, содержащей сополимер стирола с акрилонитрилом в органическом растворителе с динамической вязкостью 1-20 Пуаз и удельной электропроводностью 10-4-10-7 См/см, отличающийся тем, что формование осуществляют из раствора, дополнительно содержащего полиуретан при следующем содержании компонентов, масс.%:

сополимер стирола с акрилонитрилом 10-28 полиуретан 0,5-14 электролитические добавки, выбранные из иодидов или бромидов тетраалкиламмония 0,01-0,5 органические растворители, выбранные из ряда: дихлорэтан, этилацетат, бутилацетат, этанол остальное

(RU 2357785, 10.06.09)

Недостатком данного материала является сложность технологии его получения, низкая теплостойкость и подверженность старению под действием света.

Наиболее близким по технической сущности и достигаемому результату является нетканый материал из полиамидных нановолокон с диаметром 80-190 нм, полученный по технологии Nanospider, из растворов полиамида 46 и 6 с концентрацией 12-27 мас.% в 95% муравьиной кислоте, при вязкости раствора от 600 мПа·с до 1000 мПа·с, при относительной влажности воздуха в зоне формования 27-45%. Нановолокна получают при использовании заряженного вращающегося цилиндрического электрода с 4 струнами. Расстояние между формующим и осадительным электродами составляет 10 см, приложенное напряжение 60 кВ. Полученный нетканый материал рекомендован для фильтрации, в топливных элементах, в электрических источниках тока, а также в защитных одеждах и покрытиях (WO 2011/006967 A1, 20.01.2011).

Недостатком данного способа получения материала является нестабильность процесса электроформования нановолокон во времени, и поэтому получаемые фильтрующие материалы являются неоднородными, и вследствие этого имеют низкую эффективность задержания высокодисперсных аэрозолей.

Задачей настоящего изобретения является повышение термостабильности нановолокнистого материала и его эффективности в отношении фильтрации высокодисперсных аэрозолей.

Поставленная задача решается описываемым фильтрующим материалом, выполненным из полиамидных нановолокон, полученных методом электростатического формования, и размещенных на нетканой подложке из полимерных микроволокон, при этом материал имеет следующие характеристики:

- средний диаметр нановолокна, равный 70-300 нм, при стандартном отклонении от среднего заданного диаметра волокна, не превышающем 30%;

- масса единицы площади нановолокнистого слоя, равная 0,02-1,2 г/м2;

- гидродинамическое сопротивление потоку воздуха при линейной скорости 1 см/с, равное 2-25 Па.

Поставленная задача решается также описываемым способом получения охарактеризованного выше фильтрующего материала, согласно которому осуществляют электростатическое формование полиамидных нановолокон в электрическом поле высокого напряжения от 75 кВ до 95 кВ, созданном за счет разности потенциалов между формующим заряженным вращающимся струнным электродом, частично погруженным в раствор полиамида, и осадительным электродом, размещенным напротив свободной поверхности формующего электрода, и одновременно укладывают образующиеся нановолокона на движущуюся в межэлектродном пространстве нетканую микроволокнистую полимерную подложку.

Предпочтительно формование осуществляют из раствора полиамида в смеси муравьиной и уксусной кислот, взятых в объемном отношении 1:2, соответственно, при концентрации полимера в растворе 6-12 мас.%, при вязкости раствора 0,5-8,1 П, и удельной электропроводности 100-500 мкСм/см.

Предпочтительно формование осуществляют при температуре в зоне формования 20-25°C и относительной влажности 15-30%.

При формовании расстояние между формующим и осадительным электродами может составлять от 100 мм до 200 мм.

Поставленная задача решается также заявленным применением материала, охарактеризованного выше и полученного в соответствии с заявленным способом, в качестве рабочего слоя средств индивидуальной защиты органов дыхания, выбранных из респираторов или лицевых масок.

Для осуществления заявленного способа по так называемой технологии Nanospider использован известный из уровня техники аппарат, описанный, например, в RU 2365686, 2009, или в US 7615427, 2010.

Изобретение поясняется с помощью фигур, на которых представлены гистограммы распределения диаметров волокон полученных нановолокнистых материалов.

На фиг.1 представлена гистограмма распределения волокон по размерам, для среднего заданного диаметра волокон 300 нм.

На фиг.2 представлена гистограмма распределения волокон по размерам, для среднего заданного диаметра волокон 100 нм.

Аналогичные гистограммы были получены для волокон с заданным средним диаметром 250, 200, 150 и 70 нм соответственно.

Из анализа гистограмм можно сделать вывод, что максимальное отклонение диаметра полученных волокон от среднего заданного диаметра волокна не превышает 30%.

Ниже приведены примеры получения материалов и характеристики полученных материалов.

Пример 1.

Приготавливают 12% раствор полиамида в смеси муравьиной и уксусной кислот в объемном отношении 1:2 с вязкостью 8,1 П, электропроводностью 180 мкСм/см, для получения нановолокнистого материала со средним диаметром волокон 300 нм и массой единицы площади слоя 1,2 г/м2.

Этот раствор наносят на поверхность вращающегося заряженного струнного электрода, по технологии Nanospider при напряжении между электродами 85 кВ и при температуре в зоне формования 25°С и относительной влажности воздуха 15%, образующиеся в поле высокого напряжения полиамидные нановолокона укладывают на нетканую подложку из полипропиленовых микроволокон, движущуюся в межэлектродном пространстве на расстоянии 2 см от осадительного электрода.

Характеристики материала сведены в таблицу 1. Отклонение размеров полученных волокон от среднего заданного диаметра волокна, составившее 21%, продемонстрировано с помощью гистограммы, представленной на фиг.1.

Для исследования эффективности материала полученный материал выдерживают в термошкафу при температуре воздуха 150°C в течение 24 часов, при этом эффективность фильтрации с линейной скоростью 1 см/с по частицам NaCl с диаметром 0,1 мкм составляет 99,7% при гидродинамическом сопротивлении 25 Па.

Пример 2.

Материал получен так же, как и в примере 1, но из 7% раствора полиамида в смеси муравьиной и уксусной кислот в объемном отношении ½ с вязкостью 1,5 П, электропроводностью 300 мкСм/см, при рабочем напряжении 75 кВ, температуре в зоне формования 20°C, относительной влажности воздуха 15%, для получения волокон со средним диаметром 100 нм при массе единицы площади слоя 0,02 г/м2 на подложке из полипропиленовых микроволокон.

Характеристики материала сведены в таблицу 1. Отклонение размера волокон от среднего заданного диаметра волокна, составившее 18%, продемонстрировано с помощью гистограммы, представленной на фиг.2.

Полученный материал выдерживают в термошкафу при температуре воздуха 150°C в течение 48 часов, при этом эффективность фильтрации с линейной скоростью 1 см/с по частицам NaCl с диаметром 0,1 мкм составляет 50% при гидродинамическом сопротивлении 2 Па.

Примеры при других заявленных параметрах способа и характеристики полученных материалов сведены в таблицу 1.

Таблица 1. Концентрация полиамида, мас.% Средний диаметр волокон, нм Вязкость, П Сопротивление, Па Масса единицы площади слоя нановолокон, г/м2 Эффективность фильтрации, % 1 12 300 8,1 25 1,20 99,7 2 7 100 1,5 2 0,02 50,0 3 10 250 5,4 5 0,20 75,1 4 9 200 4,3 19 0,50 99,5 5 8 150 2,5 10 0,18 95,5 6 6 70 0,5 25 0,16 99,98

Из полученного материала вырубают фильтроэлементы, которые затем скрепляют термомеханическим способом с наружным прикрывающим нетканым материалом из полимерных микроволокон.

Материалами, полученными в соответствии с представленными выше примерами, были снабжены средства индивидуальной защиты органов дыхания, выполненные в виде респиратора типа «СПИРО», а также в виде лицевой маски.

Упомянутые средства индивидуальной защиты содержали заявленный материал в качестве рабочего слоя, покрытого с лицевой стороны, обращенной к пользователю, слоем гигиенического материала из хлопка. Как респиратор, так и маска были снабжены стандартными средствами крепления.

Средства индивидуальной защиты, содержащие заявленный материал в качестве рабочего слоя, показали высокую степень задержания токсичных аэрозольных частиц при низком аэродинамическом сопротивлении респиратора и маски.

Похожие патенты RU2477644C1

название год авторы номер документа
ФИЛЬТРУЮЩИЙ МАТЕРИАЛ, СПОСОБ ЕГО ПОЛУЧЕНИЯ И ПРИМЕНЕНИЕ 2012
  • Филатов Юрий Николаевич
  • Филатов Иван Юрьевич
  • Капустин Иван Александрович
RU2477165C1
ФИЛЬТРУЮЩИЙ МАТЕРИАЛ И СПОСОБ ЕГО ПОЛУЧЕНИЯ 2016
  • Меркулов Павел Тимофеевич
  • Родионцев Игорь Анатольевич
  • Абрамов Александр Юрьевич
  • Сальковский Юрий Евгеньевич
  • Гусев Николай Алексеевич
  • Кириллова Ирина Васильевна
RU2637952C2
ФИЛЬТРУЮЩИЙ ТЕРМОСТОЙКИЙ НАНОВОЛОКНИСТЫЙ МАТЕРИАЛ И СПОСОБ ЕГО ПОЛУЧЕНИЯ 2012
  • Филатов Юрий Николаевич
  • Филатов Иван Юрьевич
  • Капустин Иван Александрович
  • Смульская Мария Анатольевна
RU2524936C1
МНОГОСЛОЙНЫЙ НЕТКАНЫЙ МАТЕРИАЛ С ПОЛИАМИДНЫМИ НАНОВОЛОКНАМИ 2013
  • Юданова Татьяна Николаевна
  • Афанасов Иван Михайлович
  • Перминов Дмитрий Валерьевич
RU2529829C1
МНОГОСЛОЙНЫЙ МАТЕРИАЛ С ХИТОЗАНОВЫМ СЛОЕМ ИЗ НАНО- И УЛЬТРАТОНКИХ ВОЛОКОН 2013
  • Юданова Татьяна Николаевна
  • Афанасов Иван Михайлович
  • Перминов Дмитрий Валерьевич
RU2522216C1
Фильтрующий пакет, способ получения мембраны для него и способ изготовления противоаэрозольного фильтра противогаза 2018
  • Коссович Леонид Юрьевич
  • Сальковский Юрий Евгеньевич
  • Гущина Светлана Геннадьевна
  • Меркулов Павел Тимофеевич
  • Абрамов Александр Юрьевич
  • Родионцев Игорь Анатольевич
  • Алексеенко Светлана Сергеевна
  • Ломовцев Олег Сергеевич
  • Любунь Герман Павлович
RU2675924C1
Способ получения фильтрующего материала и фильтрующий материал 2018
  • Коссович Леонид Юрьевич
  • Сальковский Юрий Евгеньевич
  • Меркулов Павел Тимофеевич
  • Абрамов Александр Юрьевич
  • Родионцев Игорь Анатольевич
  • Алексенко Светлана Сергеевна
  • Савонин Сергей Александрович
  • Ломовцев Олег Сергеевич
RU2676066C1
БИОПОЛИМЕРНОЕ ВОЛОКНО, СОСТАВ ФОРМОВОЧНОГО РАСТВОРА ДЛЯ ЕГО ПОЛУЧЕНИЯ, СПОСОБ ПРИГОТОВЛЕНИЯ ФОРМОВОЧНОГО РАСТВОРА, ПОЛОТНО БИОМЕДИЦИНСКОГО НАЗНАЧЕНИЯ, СПОСОБ ЕГО МОДИФИКАЦИИ, БИОЛОГИЧЕСКАЯ ПОВЯЗКА И СПОСОБ ЛЕЧЕНИЯ РАН 2010
  • Шиповская Анна Борисовна
  • Островский Николай Владимирович
  • Сальковский Юрий Евгеньевич
  • Козырева Екатерина Владимировна
  • Дмитриев Юрий Александрович
  • Белянина Ирина Борисовна
  • Березяк Вадим Владимирович
  • Александрова Ольга Игоревна
  • Кириллова Ирина Васильевна
  • Перминов Дмитрий Валерьевич
RU2468129C2
ТЕКСТИЛЬНЫЙ АНТИМИКРОБНЫЙ МАТЕРИАЛ С МНОГОКОМПОНЕНТНЫМИ НАНОМЕМБРАНАМИ И СПОСОБ ЕГО ПОЛУЧЕНИЯ 2014
  • Хрустицкий Кирилл Владимирович
  • Хрустицкий Владимир Владимирович
  • Коссович Леонид Юрьевич
RU2579263C2
ФИЛЬТРУЮЩИЙ МАТЕРИАЛ ДЛЯ ЗАЩИТЫ ОТ ВОЗДУШНЫХ ВЗВЕСЕЙ 2019
  • Коссович Леонид Юрьевич
  • Сальковский Юрий Евгеньевич
  • Савонин Сергей Александрович
  • Абрамов Александр Юрьевич
RU2720784C1

Иллюстрации к изобретению RU 2 477 644 C1

Реферат патента 2013 года ФИЛЬТРУЮЩИЙ МАТЕРИАЛ, СПОСОБ ЕГО ПОЛУЧЕНИЯ И ПРИМЕНЕНИЕ

Изобретение относится к области получения волокнистых фильтрующих материалов. Фильтрующий материал выполнен из полиамидных нановолокон. Нановолокна получены методом электростатического формования, имеют диаметр от 70 до 300 нм при стандартном отклонении среднего диаметра волокна не более 30%, массу единицы площади от 0,02 г/м2 до 1,2 г/м2. Материал размещен на нетканой подложке из полимерных микроволокон. Нановолокнистый материал получен по технологии Nanospider методом электростатического формования в поле высокого напряжения, созданном между заряженным формующим и осадительным электродами. Волокна сформованы из раствора полиамида с концентрацией полиамида от 6 мас.% до 12 мас.% в смеси муравьиной и уксусной кислот, взятых в объемном соотношении 1:2 соответственно. Полученный материал используют в качестве рабочего слоя средств индивидуальной защиты органов дыхания. Изобретение обеспечивает возможность эффективного задержания аэрозольных частиц, содержащихся в воздухе при высокой термостабильности фильтрующего материала. 3 н. и 2 з.п. ф-лы, 2 ил., 1 табл., 2 пр.

Формула изобретения RU 2 477 644 C1

1. Фильтрующий материал, выполненный из полиамидных нановолокон, полученных методом электростатического формования, и размещенный на нетканой подложке из полимерных микроволокон, отличающийся тем, что материал имеет следующие характеристики:
- средний диаметр нановолокна, равный 70-300 нм, при стандартном отклонении от среднего заданного диаметра волокна, не превышающем 30%;
- масса единицы площади нановолокнистого слоя, равная 0,02-1,2 г/м2;
- гидродинамическое сопротивление потоку воздуха при линейной скорости 1 см/с, равное 2-25 Па.

2. Способ получения фильтрующего материала, охарактеризованного в п.1, заключающийся в том, что осуществляют электростатическое формование полиамидных нановолокон в электрическом поле высокого напряжения от 75 кВ до 95 кВ, созданном за счет разности потенциалов между формующим вращающимся струнным электродом, частично погруженным в раствор полиамида, и осадительным электродом, размещенным напротив свободной поверхности формующего электрода, и одновременно укладывают образующиеся нановолокона на движущуюся в межэлектродном пространстве нетканую микроволокнистую полимерную подложку.

3. Способ по п.2, отличающийся тем, что формование осуществляют из раствора полиамида в смеси муравьиной и уксусной кислот, взятых в объемном отношении 1:2 соответственно, при концентрации полимера в растворе 6-12 мас.%, при вязкости раствора 0,5-8,1 Пз и удельной электропроводности 100-500 мкСм/см, при этом формование осуществляют при температуре в зоне формования 20-25°C и относительной влажности 15-30%.

4. Способ по п.2, отличающийся тем, что формование осуществляют при расстоянии между формующим и осадительным электродами от 100 мм до 200 мм.

5. Применение материала, охарактеризованного в п.1 и полученного в соответствии с любым из пп.2-4, в качестве рабочего слоя средств индивидуальной защиты органов дыхания, выбранных из респираторов или лицевых масок.

Документы, цитированные в отчете о поиске Патент 2013 года RU2477644C1

WO 2011006967 A1, 20.01.2011
WO 2011015439 A1, 11.08.2005
US 7618702 B2, 17.11.2009
US 7083460 B2, 28.09.2010
ФИЛЬТРУЮЩИЙ ЭЛЕМЕНТ И СПОСОБ ФИЛЬТРОВАНИЯ 2001
  • Гиллингэм Гэри Р.
  • Гогинс Марк А.
  • Уик Томас М.
RU2281146C2
ФИЛЬТРУЮЩИЙ МАТЕРИАЛ, СПОСОБ ФИЛЬТРАЦИИ И ФИЛЬТРОВАЛЬНАЯ ПЕРЕГОРОДКА 2001
  • Бенсон Джеймс Д.
  • Крофут Дуглас Г.
  • Гогинс Марк А.
  • Уик Томас М.
RU2280491C2
ФИЛЬТРУЮЩИЙ МАТЕРИАЛ 2009
  • Филатов Юрий Николаевич
  • Филатов Иван Юрьевич
  • Капустин Иван Александрович
RU2414950C1
US 20100144228 A1, 10.06.2010.

RU 2 477 644 C1

Авторы

Филатов Юрий Николаевич

Перминов Дмитрий Валерьевич

Кириллова Ирина Васильевна

Филатов Иван Юрьевич

Щуров Павел Михайлович

Даты

2013-03-20Публикация

2011-11-07Подача