Изобретение относится к области получения фильтрующих материалов, предпочтительно применяемых для очистки воздуха от аэрозольных частиц и которые могут быть использованы в качестве основного материала и/или в составе комплекта защитных материалов для изготовления легких фильтрующих полумасок, гофрированных фильтров и воздухопроницаемых экранов для защиты от пылевых частиц, аэрозольных продуктов горения, микроорганизмов и пыльцы растений.
Для высокоэффективной фильтрации воздуха от взвешенных частиц применяются высокопористые нетканые материалы из хаотично ориентированных волокон, как правило, обладающих электрическим зарядом. За счет электрического поля частицы в идущем через фильтр потоке воздуха отклоняются от траектории полета и притягиваются к волокнам с противоположным зарядом. Электрический заряд появляется при изготовлении материалов и значительно уменьшается с течением времени, особенно при эксплуатации или хранении фильтра во влажной атмосфере или попадании на его поверхность воды. В этом случае вклад электростатического осаждения в процесс фильтрации частиц минимизируется, из-за чего общая эффективность фильтра снижается вплоть до полной непригодности его к использованию.
Для обеспечения длительной и независимой от условий внешней среды работоспособности фильтра необходимо применение иных механизмов фильтрации - диффузионного, инерционного, отсеивающего. Данные механизмы наиболее эффективно проявляются при уменьшении диаметра волокон до субмикронных значений. Для предотвращения негативного воздействия воды, попадающей на поверхность фильтрующего материала, целесообразно использование полимерных волокон с высокой гидрофобностью, поскольку большой краевой угол смачивания ведет к скатыванию капель с поверхности материала.
Известен фильтрующий материал (см. патент РФ 2637952 по кл. МПК B01D 39/16, опуб. 08.12.2017), выполненный из полимерных нановолокон, полученный методом электроформования, размещенный на нетканой полимерной основе, нановолокна выполнены из полиакрилонитрила и имеют диаметр, равный 180-250 нм, при этом масса единицы площади нановолокнистого слоя составляет 1-7 г/м2, сопротивление потоку воздуха при линейной скорости 1 см/с равно 47-150 Па, а полимерные нановолокна получают электроформованием из раствора, в котором концентрация полимера составляет 12-13 мас. %. Фильтрующий материал предназначен для сверхтонкой очистки воздуха от высокодисперсных аэрозолей в противоаэрозольных фильтрах, противогазах, респираторах и масках.
Однако данный фильтрующий материал обладает высоким аэродинамическим сопротивлением и гидрофильностью.
Известен также фильтрующий материал (см. патент РФ № 2477644 по кл. МПК B01D 39/00, опуб.20.03.2013), выполненный из полиамидных нановолокон, полученных методом электростатического формования, и размещенный на нетканой подложке из полимерных микроволокон, при этом материал имеет следующие характеристики: средний диаметр нановолокна, равный 70-300 нм, при стандартном отклонении от среднего заданного диаметра волокна, не превышающем 30%;масса единицы площади нановолокнистого слоя, равная 0,02-1,2 г/м2;гидродинамическое сопротивление потоку воздуха при линейной скорости 1 см/с, равное 2-25 Па. Полученный материал используют в качестве рабочего слоя средств индивидуальной защиты органов дыхания.
Однако используемое в данном материале полиамидное волокно обладает высокой гидрофильностью, хорошо впитывает воду, что ограничивает возможность применения полиамидных фильтров в условиях высокой влажности или воздействия атмосферных осадков.
Наиболее близким по достигаемому результату является текстильный антимикробный материал с многокомпонентными наномембранами (см.патент РФ № 2579263, по кл. МПК А61L 15/18, B82B 1/00, опуб. 10.04.2016), содержащий текстильную основу и покрытие из полимерного волокнистого материала, которое представляет собой воздухо- и паропроницаемую наномембрану, сформированную многокомпонентным антимикробным фильтрующим слоем нановолокон из полимерного волокнистого материала, в качестве которого используют полиамид, или полиакрилонитрил, или этиленвинилацетат, или полиэтилентерефталат, или поликапролактан, или поливинилиденфторид, или полиуретан, или полистирол, или полиэтиленоксид, или полиэтилен в сочетании с полимерной составляющей - полигексаметилгуанидин гидрохлоридом, в который между молекулярными структурами полимерного волокнистого материала с полигексаметилгуанидином гидрохлоридом введены наночастицы коллоидного или кластерного серебра, при этом диаметры нановолокон составляют 50-150 нм.
Недостатком данного материала является используемый в составе фильтрующих материалов волокнообразующий и антимикробный компонент полигексаметилгуанидин гидрохлорид, который является высокотоксичным веществом, приводящим при вдыхании к серьезным легочным заболеваниям вплоть до летального исхода. Это делает невозможным использование данных материалов для средств защиты органов дыхания. Также в патенте не указаны эффективность фильтрации высокодисперсных аэрозолей и сопротивление потоку воздуха.
Технической проблемой заявляемого изобретения является создание эффективного фильтрующего материала с защитными свойствами, устойчивыми к воздействию влаги и стеканию электрического заряда.
Технический результат заключается в получении фильтрующего материала, обладающего аэродинамическим сопротивлением не более 25 Па при скорости потока воздуха 8,34 см/с, эффективностью фильтрации не менее 95% в отношении частиц аэрозоля размером 0,1-0,4 мкм при скорости потока воздуха 5 см/с.
Техническая проблема и заявляемый результат достигаются тем, что в фильтрующем материале для защиты от воздушных взвесей, включающем закреплённую с помощью клеевого слоя на каркасном слое наномембрану, сформированную методом электроформования из прядильного раствора, и нанесённый с противоположной стороны наномембраны внешний слой, согласно изобретению, слой наномембраны сформирован из прядильного раствора, включающего сополимер винилиденфторида и тетрафторэтилена, полиакрилонитрил и диметилформамид при концентрации сополимера в растворе 6,0-7,5 масс. % и при концентрации полиакрилонитрила в растворе 6,0-7,5 масс. %, клеевой слой представляет собой водную дисперсию частиц полиакрилата, каркасный слой выполнен из тканого полотна, состоящего из полипропиленовых, полиэфирных или капроновых нитей, при этом наномембрана имеет поверхностную плотность не более 0,5 г/м2, диаметр волокон составляет 50-500 нм
Фильтрующий материал получают следующим образом.
Получение нановолокнистых мембран осуществляют методом бескапиллярного электроформования с поверхности прядильного раствора, нанесенного на формующий электрод. Между находящимся на определенном расстоянии формующим и осадительным электродами помещают каркасный слой (подложку) из тканого полипропиленового полотна, на который предварительно наносят водную дисперсию частиц полиакрилата, образующую клеевой слой.
После подачи напряжения на электроды, вытягивающиеся в электрическом поле струи прядильного раствора укладываются на подложку в виде сухих волокон субмикронного диаметра, образующих волокнистую наномембрану, закрепленную на каркасном слое. Нанесенная на подложку наномембрана укрывается без приклеивания внешним слоем в виде нетканого полотна из полипропиленовых нитей и полученный пакет скрепляется методом ультразвуковой сварки.
Ниже приведены примеры получения материалов и их характеристики.
Пример 1
Для получения наномембраны используется прядильный раствор, состоящий из 7,5 масс.% сополимера винилиденфторида с тетрафторэтиленом, 6 масс. % полиакрилонитрила, остальное диметилформамид. Расстояние между формующим и осадительным электродами составляет 180 мм. Напряжение между электродами составляет 80 кВ. Полученная мембрана с поверхностной плотностью 0,4 г/м2, состоящая из ультратонких полимерных волокон диаметром 150-250 нм, является однородной и равномерно нанесенной по всей ширине подложки, а также обладает гидрофобными свойствами (краевой угол смачивания превышает 105°).
Эффективность фильтрации материалом с наномембраной в отношении монодисперсного аэрозоля размером 0,1-0,4 мкм составляет 99,04% при скорости потока 5 см/с, аэродинамическое сопротивление при скорости потока 8,34 см/с составляет 22 Па.
Пример 2
Мембрана, полученная по указанному в Примере 1 способу из прядильного раствора, состоящего из 5 масс.% сополимера винилиденфторида с тетрафторэтиленом, 7,5 масс.% полиакрилонитрила, остальное диметилформамид. Вследствие уменьшения массовой доли гидрофобного сополимера в получаемых волокнах, материал приобретает гидрофильные свойства - вода растекается по его поверхности и впитывается в межволоконное пространство.
Пример 3
Мембрана, полученная по указанному в Примере 1 способу из прядильного раствора, состоящего из 9 масс.% сополимера винилиденфторида с политетрафторэтиленом, 5 масс.% полиакрилонитрила, остальное диметилформамид. Из-за повышенной массовой доли упругого сополимера в получаемой волокнистой мембране после высыхания накапливаются остаточные напряжения, приводящие к существенной усадке мембраны (более 15%), что делает невозможным дальнейшую работу по изготовлению из нее фильтрующего материала.
Пример 4
Мембрана, полученная по указанному в Примере 1 способу из прядильного раствора, состоящего из 6,67 масс. % сополимера поливинилиденфторида с политетрафторэтиленом, 8 масс. % полиакрилонитрила, остальное диметилформамид.
Увеличение концентрации полиакрилонитрила более 7,5 масс. % ведет к ускоренному испарению растворителя из раствора, что приводит к отверждению волокон непосредственно на поверхности формующего электрода и лавинообразному налипанию новых и новых волокон на образующиеся структуры. Полученная мембрана неоднородна по ширине подложки, ее поверхностная плотность варьируется от 0,1 до 1 г/м2 в разных участках. Мембрана с неравномерными фильтрующими свойствами непригодна для изготовления материала.
Пример 5
Мембрана, полученная по указанному в Примере 1 способу из прядильного раствора, состоящего из 6,0 масс. % сополимера поливинилиденфторида с политетрафторэтиленом, 5 масс. % полиакрилонитрила, остальное диметилформамид.
Уменьшение концентрации полиакрилонитрила до 5% приводит к получению мембраны из нановолокон со значительным количеством микрокапель, образующихся вследствие замедленного испарения растворителя с поверхности полимерных струй. Наличие микрокапельных дефектов приводит к снижению эффективности фильтрации аэрозоля диоктилфталата 0,4 мкм до 90,8% при скорости потока 5 см/с, аэродинамическое сопротивление при скорости потока 8,34 см/с составляет 24 Па.
В таблице приведены параметры получения и свойства фильтрующих мембран.
Таким образом, заявляемый фильтрующий материал обладает аэродинамическим сопротивлением не более 25 Па при скорости потока воздуха 8,34 см/с, эффективностью фильтрации не менее 95% в отношении частиц аэрозоля размером 0,1-0,4 мкм при скорости потока воздуха 5 см/с.
Таблица - Параметры получения и свойства фильтрующих мембран
название | год | авторы | номер документа |
---|---|---|---|
ФИЛЬТРУЮЩИЙ МАТЕРИАЛ НА ОСНОВЕ СЛОЯ ПОЛИМЕРНЫХ НАНОВОЛОКОН И ПРЯДИЛЬНЫЙ РАСТВОР ДЛЯ ЕГО ПОЛУЧЕНИЯ | 2019 |
|
RU2718786C1 |
ТЕКСТИЛЬНЫЙ АНТИМИКРОБНЫЙ МАТЕРИАЛ С МНОГОКОМПОНЕНТНЫМИ НАНОМЕМБРАНАМИ И СПОСОБ ЕГО ПОЛУЧЕНИЯ | 2014 |
|
RU2579263C2 |
Текстильный нетканый электропрядный материал с многокомпонентными активными модифицирующими добавками и способ его получения | 2018 |
|
RU2697772C1 |
Текстильный нетканый многослойный электропрядный материал с повышенными износостойкостью и стойкостью к воздействию моющих средств и способ его получения | 2018 |
|
RU2693832C1 |
Способ получения фильтрующего материала и фильтрующий материал | 2018 |
|
RU2676066C1 |
МЕДИЦИНСКАЯ МНОГОСЛОЙНАЯ ПОВЯЗКА С МНОГОФУНКЦИОНАЛЬНЫМИ НАНОМЕМБРАНАМИ И ИЗДЕЛИЯ НА ЕЕ ОСНОВЕ | 2014 |
|
RU2578458C2 |
ФИЛЬТРУЮЩИЙ МАТЕРИАЛ И СПОСОБ ЕГО ПОЛУЧЕНИЯ | 2016 |
|
RU2637952C2 |
Фильтрующий пакет, способ получения мембраны для него и способ изготовления противоаэрозольного фильтра противогаза | 2018 |
|
RU2675924C1 |
ФИЛЬТРУЮЩИЙ МАТЕРИАЛ | 2011 |
|
RU2478005C1 |
ФИЛЬТРУЮЩИЙ МАТЕРИАЛ, СПОСОБ ЕГО ПОЛУЧЕНИЯ И ПРИМЕНЕНИЕ | 2012 |
|
RU2477165C1 |
Изобретение относится к области получения фильтрующих материалов, предпочтительно применяемых для очистки воздуха от аэрозольных частиц и которые могут быть использованы в качестве основного материала и/или в составе комплекта защитных материалов для изготовления легких фильтрующих полумасок, гофрированных фильтров и воздухопроницаемых экранов для защиты от пылевых частиц, аэрозольных продуктов горения, микроорганизмов и пыльцы растений. Фильтрующий материал для защиты от воздушных взвесей включает закрепленную с помощью клеевого слоя на каркасном слое наномембрану, сформированную методом электроформования из прядильного раствора, и нанесенный с противоположной стороны наномембраны внешний слой. Слой наномембраны сформирован из прядильного раствора, включающего сополимер винилиденфторида и тетрафторэтилена, полиакрилонитрил и диметилформамид при концентрации сополимера в растворе 6,0-7,5 масс. %, при концентрации полиакрилонитрила в растворе 6,0-7,5 масс. % и диметилформамид – остальное. Клеевой слой представляет собой водную дисперсию частиц полиакрилата. Каркасный слой выполнен из тканого полотна, состоящего из полипропиленовых, полиэфирных или капроновых нитей. Наномембрана имеет поверхностную плотность не более 0,5 г/м2, диаметр волокон составляет 50-500 нм. Технический результат: создание эффективного фильтрующего материала с защитными свойствами, устойчивыми к воздействию влаги и стеканию электрического заряда, получение фильтрующего материала, обладающего аэродинамическим сопротивлением не более 25 Па при скорости потока воздуха 8,34 см/с, эффективностью фильтрации не менее 95% в отношении частиц аэрозоля размером 0,1-0,4 мкм при скорости потока воздуха 5 см/с. 1 табл., 5 пр.
Фильтрующий материал для защиты от воздушных взвесей, включающий закрепленную с помощью клеевого слоя на каркасном слое наномембрану, сформированную методом электроформования из прядильного раствора, и нанесенный с противоположной стороны наномембраны внешний слой, отличающийся тем, что слой наномембраны сформирован из прядильного раствора, включающего сополимер винилиденфторида и тетрафторэтилена, полиакрилонитрил и диметилформамид при концентрации сополимера в растворе 6,0-7,5 масс. %, при концентрации полиакрилонитрила в растворе 6,0-7,5 масс. % и диметилформамид - остальное, клеевой слой представляет собой водную дисперсию частиц полиакрилата, каркасный слой выполнен из тканого полотна, состоящего из полипропиленовых, полиэфирных или капроновых нитей, при этом наномембрана имеет поверхностную плотность не более 0,5 г/м2, диаметр волокон составляет 50-500 нм.
ТЕКСТИЛЬНЫЙ АНТИМИКРОБНЫЙ МАТЕРИАЛ С МНОГОКОМПОНЕНТНЫМИ НАНОМЕМБРАНАМИ И СПОСОБ ЕГО ПОЛУЧЕНИЯ | 2014 |
|
RU2579263C2 |
ФИЛЬТРУЮЩИЙ МАТЕРИАЛ, СПОСОБ ЕГО ПОЛУЧЕНИЯ И ПРИМЕНЕНИЕ | 2011 |
|
RU2477644C1 |
Способ получения фильтрующего материала и фильтрующий материал | 2018 |
|
RU2676066C1 |
ЭЛЕКТРЕТНЫЙ ВОЛОКНИСТЫЙ ФИЛЬТРУЮЩИЙ МАТЕРИАЛ И СПОСОБ ЕГО ПОЛУЧЕНИЯ | 2001 |
|
RU2189850C1 |
ФИЛЬТРУЮЩИЙ МАТЕРИАЛ | 2011 |
|
RU2478005C1 |
US 5194322 A1, 16.03.1993 | |||
CN 102946968 B, 24.02.2016 | |||
ТЕПЛОПЕРЕДАЮЩАЯ ПОВЕРХНОСТЬ | 2006 |
|
RU2384803C2 |
Авторы
Даты
2020-05-13—Публикация
2019-10-18—Подача