БИОМАТЕРИАЛ ДЛЯ ВОЗМЕЩЕНИЯ ДЕФЕКТОВ КОСТЕЙ И СПОСОБ ЕГО ПОЛУЧЕНИЯ Российский патент 2013 года по МПК A61K35/32 A61L27/12 A61P19/04 

Описание патента на изобретение RU2478394C1

Изобретение относится к медицине, в частности к материалам для возмещения дефектов костей (остеомиелитических секвестров, костных кист, очагов остеонекроза) посредством осуществления остеоиндукции и остеокондукции в полостях, заполненных предлагаемым биоматериалом.

Известен имплантат для пластики костных полостей на основе крупноячеистой коллагеновой матрицы из декальцинированной губчатой кости, причем на нем осуществляют иммобилизацию антибактериальных препаратов, культур бластных клеток и стимуляторов биогенеза (RU №2335258, 27.05.2008).

Известен биоимплантат для возмещения дефектов минерализованных тканей, который содержит минеральную составляющую, выделенную из костной ткани диафизов сельскохозяйственных животных путем воздействия 0,5 н. раствором соляной кислоты и насыщенного раствора щелочи, дополнительно содержит коллаген, белки плазмы крови пациентов с активным остеогенезом, взятой в период дистракции, физиологический раствор (RU №2311167 С2, 20.06.2006).

Недостатками известных имплантатов являются: сложность изготовления, низкая остеоиндуктивная и остеопластическая эффективность, отсутствие остеокондуктивной активности, они ограниченно биосовместимы, окружаются фиброзной капсулой. При получении известных имплантатов используют деминерализующие вещества, нарушающие естественную микроархитектонику и химический состав костной ткани, что отрицательно сказывается на остеинтеграционных свойствах имплантатов и клинических результатах.

Задачей изобретения является создание биоматериала с высокими остеоиндуктивными, остеокондуктивными и остеоинтеграционными свойствами, имеющего высокопористую структуру, близкую к естественной структуре минерального матрикса костной ткани, а также упрощение процедуры изготовления.

Указанный технический результат достигается тем, что способ получения биоматериала для возмещения дефектов костей включает механическую очистку костей от параоссальных мягких тканей, органические компоненты кости удаляют с помощью 6% раствора гипохлорита натрия в течение 6-8 суток, измельчают в фарфоровой ступке до размеров гранул диаметром 50-100 мкм, промывают в дистиллированной воде и 96% этаноле и высушивают при комнатной температуре в течение суток. Полученный биоматериал характеризуется шероховатостью и наноструктурированностью и имеет упорядоченную высокопористую структуру с размером пор 50-150 мкм, близкую к естественной структуре минерального матрикса костной ткани.

Настоящее изобретение поясняют описанием, примером использования и иллюстрациями, на которых изображено:

Фиг.1 - упорядоченная высокопористая трехмерная организация биоматериала, близкая к естественной структуре минерализованного матрикса костной ткани. Сканирующая электронная микроскопия;

Фиг.2 - прикрепление к поверхности биоматериала остеогенных клеток и кровеносного сосуда свидетельствует об остеоинтеграционной эффективности биоматериала. Сканирующая электронная микроскопия;

Фиг.3 - врастание кровеносных сосудов и периваскулярных остеогенных клеток в трехмерную высокопористую структуру биоматериала свидетельствует о высоких остеоиндуктивных и остеокондуктивных свойствах биоминерала. Сканирующая электронная микроскопия;

Фиг.4 - эффективность биоматериала, как стимулятора регенерации костной ткани при возмещении дырчатого дефекта большеберцовой кости экспериментальных животных (крыс): а - регенерат животного контрольной группы, б - регенерат животного опытной группы. Срок эксперимента 7 суток. Стрелками обозначены гранулы биоматериала, окруженные новообразованной костной тканью в необычно ранние сроки. Световая микроскопия парафинового среза. Окраска гематоксилином и эозином. Объектив 10, окуляр 10;

Фиг.5 - доля различных тканевых компонентов в составе регенерата, формирующегося после перфорационной травмы большеберцовой кости крыс, в контроле (K) и опыте (О) через 7, 14 и 21 сутки после операции. Белый цвет - неминерализованные компоненты; темно-серый - остеоид костной ткани; черный - минерализованный матрикс костной ткани. Результаты рентгеновского эдектронно-зондового микроанализа.

Способ получения биоматериала осуществляют следующим образом.

Кости сельскохозяйственных животных очищают механическим способом от параоссальных мягких тканей. Органические компоненты кости (клетки, сосуды, костный мозг) удаляют с помощью 6% раствора гипохлорита натрия в течение 6-8 суток. Очищенную кость либо костные блоки измельчают в фарфоровой ступке до размеров частиц 50-100 мкм по трем измерениям (ширина, длина и высота). Полученный порошок, состоящий из гранул диаметром 50-100 мкм, промывают в дистиллированной воде и 96% этаноле и высушивают при комнатной температуре в течение суток.

Полученный биоматериал имеет упорядоченную высокопористую структуру с размером пор 50-150 мкм, близкую к естественной структуре минерального матрикса костной ткани (фиг.1).

Пример использования биоматериала.

В эксперименте на 60 взрослых крысах линии Wistar под общей анестезией в проксимальной трети диафиза большеберцовых костей в контрольной и опытной группах моделировали несквозные дырчатые дефекты диаметром 2 мм и глубиной 2,5-3 мм. В опытной группе животным непосредственно после операции в область сформированного дефекта вводили стерильный порошок биоматериала. Операционную рану послойно ушивали узловыми швами.

Сканирующая электронная микроскопия показала, что биоматериал имеет высокопористую структуру, содержит взаимосвязанные поры размером 50-150 мкм и сохраняет естественную архитектонику минерализованного матрикса костной ткани (фиг.1). Микрорельеф поверхности биоматериала характеризуется шероховатостью и наноструктурированностью, что обеспечивают оптимальные отношения между уровнем адгезии, темпами пролиферации и степенью дифференциации остеогенных клеток (фиг.2). Кровеносные сосуды и остеогенные клетки вросли в биоматериал, что свидетельствует о его высоких остеокондуктивных и остеоиндуктивных свойствах (фиг.3). После введения биоматериала активизировалось репаративное костеобразование и сократились сроки возмещения дефекта кости, о чем свидетельствует проведенное гистологическое исследование (фиг.4). Так в опытной группе животных через 7 суток после операции объем костной ткани в регенерате возрос более чем в 2 раза - с 8,6±0,41% в контроле до 17,9±0,63% в опыте (Р<0,001) (фиг.5).

Использование предлагаемого способа в отделе экспериментальной травматологии и ортопедии ФГБУ «РНЦ «ВТО» им. акад. Г.А.Илизарова» позволило получить биоматериал без воздействия деминерализующих веществ, который имеет высокопористую структуру, близкую к естественной структуре минерального матрикса костной ткани. Предложенный способ упростил процедуру изготовления биоматериала, а его применение позволило сократить сроки возмещения дефектов костей.

Похожие патенты RU2478394C1

название год авторы номер документа
СПОСОБ ПОЛУЧЕНИЯ И ПРИМЕНЕНИЯ ВЫСОКООЧИЩЕННОГО МИНЕРАЛЬНОГО МАТРИКСА В ВИДЕ СЕГМЕНТОВ И ГРАНУЛ С ОСТЕОИНДУКТИВНЫМИ СВОЙСТВАМИ ДЛЯ ЗАМЕЩЕНИЯ КОСТНЫХ ДЕФЕКТОВ 2018
  • Веремеев Алексей Владимирович
  • Кутихин Антон Геннадиевич
  • Нестеренко Владимир Георгиевич
  • Болгарин Роман Николаевич
RU2693606C1
Скаффолд для замещения костных дефектов 2020
  • Тимощук Елена Игоревна
  • Пономарева Дарья Владимировна
  • Самойлов Владимир Маркович
  • Зейналова Сакира Зульфуевна
RU2768571C1
БИОТРАНСПЛАНТАТ НА ОСНОВЕ ПЕНОКЕРАМИЧЕСКИХ НОСИТЕЛЕЙ СИСТЕМЫ ОКСИД ЦИРКОНИЯ - ОКСИД АЛЮМИНИЯ И МУЛЬТИПОТЕНТНЫХ СТРОМАЛЬНЫХ КЛЕТОК КОСТНОГО МОЗГА ЧЕЛОВЕКА ДЛЯ ВОССТАНОВЛЕНИЯ ПРОТЯЖЕННЫХ ДЕФЕКТОВ КОСТНОЙ ТКАНИ И СПОСОБ ЕГО ПОЛУЧЕНИЯ 2008
  • Гольдштейн Дмитрий Вадимович
  • Бухарова Татьяна Борисовна
  • Фатхудинов Тимур Хайсамудинович
  • Макаров Андрей Витальевич
  • Ильющенко Александр Федорович
  • Цедик Лариса Владимировна
RU2386453C1
КОМПОЗИЦИЯ - ОСТЕОИНДУКТОР И ОСТЕОКОНДУКТОР, ПРИ ЛЕЧЕНИИ КОСТНОЙ ПАТОЛОГИИ В СТОМАТОЛОГИИ И ЧЕЛЮСТНО-ЛИЦЕВОЙ ХИРУРГИИ, И СПОСОБ ПОЛУЧЕНИЯ КОМПОЗИЦИИ - ОСТЕОИНДУКТОРА И ОСТЕОКОНДУКТОРА, ПРИ ЛЕЧЕНИИ КОСТНОЙ ПАТОЛОГИИ В СТОМАТОЛОГИИ И ЧЕЛЮСТНО-ЛИЦЕВОЙ ХИРУРГИИ 2008
  • Шайхалиев Астемир Икрамович
  • Ямсков Игорь Александрович
  • Ямскова Виктория Петровна
  • Краснов Михаил Сергеевич
RU2383564C1
ТРЕХМЕРНЫЕ МАТРИЦЫ ИЗ СТРУКТУРИРОВАННОГО ПОРИСТОГО МОНЕТИТА ДЛЯ ТКАНЕВОЙ ИНЖЕНЕРИИ И РЕГЕНЕРАЦИИ КОСТИ И СПОСОБ ИХ ПОЛУЧЕНИЯ 2009
  • Фонт Перес Хулио
  • Кастро Фео Мария Бегонья
  • Дель Ольмо Бастерречеа Маите
  • Гарсия Васкес Мария Долорес
  • Рубио Ретама Хорхе
  • Лопес Кабаркос Энрике
  • Руэда Родригес Кармен
  • Тамими Мариньо Фале
  • Хамдан Али Алхраисат Мохаммад
RU2491960C9
МЕДИЦИНСКИЙ КЛЕЙ-БИОИМПЛАНТАТ НОВОГО ПОКОЛЕНИЯ НА ОСНОВЕ БИОПОЛИМЕРНЫХ НАНОКОМПОЗИТОВ В ВИДЕ ПОЛУСИНТЕТИЧЕСКОЙ ПОЛИМЕРНОЙ МАТРИЦЫ С ПРИМЕНЕНИЕМ ЛАЗЕРНЫХ ТЕХНОЛОГИЙ 2011
  • Фейгина Елена Владимировна
  • Баграмов Роберт Иванович
RU2477996C1
МНОГОМЕРНЫЙ БИОМАТЕРИАЛ И СПОСОБ ЕГО ПРИГОТОВЛЕНИЯ 2010
  • Дюфран Дени
  • Деллуа Кристьян
RU2542430C2
СПОСОБ СТИМУЛЯЦИИ РЕПАРАТИВНОГО ОСТЕОГЕНЕЗА В ЭКСПЕРИМЕНТЕ 2022
  • Афаунов Аскер Алиеич
  • Муханов Михаил Львович
  • Блаженко Александр Николаевич
  • Сотниченко Александр Сергеевич
  • Веревкин Александр Александрович
  • Алиев Рамзан Русланович
  • Шаповалов Владимир Константинович
  • Дутов Виктор Сергеевич
  • Родин Матвей Игоревич
RU2783642C1
Устройство, комплект и способ для введения трансплантата в костный регенерат 2020
  • Ковалев Алексей Вячеславович
  • Бушнев Сергей Владимирович
  • Сморчков Михаил Михайлович
RU2741206C1
Способ трансплантации биокомпозитных сфероидов для обеспечения возможности восстановления целостности кости при дефектах, размеры которых превышают критические 2020
  • Ковалев Алексей Вячеславович
  • Бушнев Сергей Владимирович
  • Зайцева Ольга Сергеевна
  • Сморчков Михаил Михайлович
  • Коренкова Мария Владимировна
RU2744756C1

Иллюстрации к изобретению RU 2 478 394 C1

Реферат патента 2013 года БИОМАТЕРИАЛ ДЛЯ ВОЗМЕЩЕНИЯ ДЕФЕКТОВ КОСТЕЙ И СПОСОБ ЕГО ПОЛУЧЕНИЯ

Настоящее изобретение относится к медицине и описывает способ получения биоматериала для возмещения дефектов костей, включающий механическую очистку костей от параоссальных мягких тканей, где органические компоненты кости удаляют с помощью 6% раствора гипохлорита натрия в течение 6-8 суток, измельчают в фарфоровой ступке до размеров гранул диаметром 50-100 мкм, промывают в дистиллированной воде и 96% этаноле и высушивают при комнатной температуре в течение суток. Полученный биоматериал характеризуется шероховатостью, наноструктурированностью и имеет упорядоченную высокопористую структуру с размером пор 50-150 мкм, близкую к естественной структуре минерального матрикса костной ткани. 2 н.п. ф-лы, 1 пр., 5 ил.

Формула изобретения RU 2 478 394 C1

1. Способ получения биоматериала для возмещения дефектов костей, включающий механическую очистку костей от параоссальных мягких тканей, отличающийся тем, что органические компоненты кости удаляют с помощью 6%-ного раствора гипохлорита натрия в течение 6-8 суток, измельчают в фарфоровой ступке до размеров гранул диаметром 50-100 мкм, промывают в дистиллированной воде и 96% этаноле и высушивают при комнатной температуре в течение суток.

2. Биоматериал для возмещения дефектов костей, полученный способом по п.1, состоящий из минерального порошка, выделенного из костной ткани сельскохозяйственных животных, отличающийся тем, что полученный биоматериал характеризуется шероховатостью, наноструктурированностью и имеет упорядоченную высокопористую структуру с размером пор 50-150 мкм, близкую к естественной структуре минерального матрикса костной ткани.

Документы, цитированные в отчете о поиске Патент 2013 года RU2478394C1

WO 2008032928 А1, 20.03.2008
US 5417975 А, 23.05.1995
US 4919931 А, 24.04.1990
БИОИМПЛАНТАТ ДЛЯ ВОЗМЕЩЕНИЯ ДЕФЕКТОВ МИНЕРАЛИЗОВАННЫХ ТКАНЕЙ И СПОСОБ ЕГО ПОЛУЧЕНИЯ 2005
  • Шевцов Владимир Иванович
  • Талашова Ирина Александровна
  • Лунева Светлана Николаевна
  • Ковинька Михаил Александрович
RU2311167C2

RU 2 478 394 C1

Авторы

Ирьянов Юрий Михайлович

Ирьянова Татьяна Юрьевна

Даты

2013-04-10Публикация

2011-11-23Подача