СПОСОБ КОНТРОЛЯ РАБОТЫ СИСТЕМЫ ТЕРМОРЕГУЛИРОВАНИЯ КОСМИЧЕСКОГО АППАРАТА Российский патент 2013 года по МПК B64G1/50 

Описание патента на изобретение RU2481253C2

Изобретение относится к системам терморегулирования (СТР) космических аппаратов (КА), преимущественно телекоммуникационных спутников.

В настоящее время СТР мощных телекоммуникационных спутников (холодопроизводительностыо, например, ≈ 10 кВт) с целью снижения ее массы выполняют с жидкостными трактами с параллельными ветвями (в этом случае в СТР применяют менее мощный электронасосный агрегат (ЭНА) с небольшой массой и жидкостный тракт СТР выполняют с внутренним диаметром, меньшим, чем при последовательном соединении, что также снижает объем и, следовательно, массу теплоносителя в СТР).

В общем случае при наземных испытаниях (в т.ч. при контроле качества изготовления) и орбитальном функционировании контроль работы СТР (контроль нормального функционирования СТР) осуществляется телеметрическими измерениями температур различных участков жидкостного тракта СТР, определением суммарного расхода теплоносителя в жидкостном тракте на основе данных телеметрических измерений, которые при нормальной работе СТР должны удовлетворять требуемым (заданным) нормам.

В случае наличия в жидкостном тракте параллельных ветвей также необходимо по данным телеметрических измерений подтверждать, что величины расходов теплоносителя в параллельных ветвях удовлетворяют требуемым нормам: как правило, жидкостные тракты параллельных ветвей должны быть выполнены таким образом, чтобы в каждой параллельной ветви расход теплоносителя был бы близок к половине суммарного расхода теплоносителя в жидкостном тракте (равной, например, 45 см3/с). В связи с тем, что знание высокоточной величины расхода теплоносителя в параллельной ветви важно для более достоверного прогноза и диагностики величин коэффициентов полезного действия приборов, установленных на этой ветви, авторами разработано новое техническое решение, обеспечивающее с высокой точностью (с погрешностью до 5%) определять величины расходов теплоносителя в параллельных ветвях по сравнению с известным способом с погрешностью до 20%.

Известен способ определения величины расхода теплоносителя на основе патента Российской Федерации №2164884 [1], по которому (см. фиг.1, где: 1 - электронасосный агрегат (ЭНА); 2, 3 - северная и южная сотовые приборные панели с встроенными последовательно соединенными жидкостными коллекторами; 4, 5 - сотовые панели (расположенные между панелями 2, 3), на которых с обеих сторон установлены приборы спутника, а в сотовых панелях под ними размещены коллекторы 4.1 и 5.1, которые в каждой панели между собой соединены стыками 4.2 и 5.2 монтажной сваркой; в общем случае фактические суммарные длины и гидравлические сопротивления коллекторов в каждой панели отличны друг от друга; жидкостные тракты панелей образуют две параллельные ветви (1) и (2), которые на их входах и выходах (4.3 и 5.3) гидравлически объединены и они являются частью жидкостного трата 6 СТР; 7 - гидроаккумулятор; 8 - система телеметрических измерений; 9, 10, 11 - датчики температуры) для данного момента времени по данным телеметрии измеряют:

- температуры жидкостного тракта t1, t2, t3 на каждом выходе параллельной ветви и на общем их выходе;

- определяют суммарный расход теплоносителя в жидкостном тракте, обеспечиваемый ЭНА 1.

И на основе данных этих измерений для вышеуказанного момента времени в настоящее время оценивают величины расходов теплоносителя в параллельных ветвях для того же вышеуказанного момента, считая, что они равны половине величины суммарного расхода в жидкостном тракте (т.к. при разработке параллельных ветвей их гидравлические сопротивления расчетно выполняют близкими друг к другу значениями).

Анализ, проведенный авторами, опыта применения вышеуказанного способа показал, что ввиду того что при определении величин расходов через параллельные ветви не учитываются влияния транспортных запаздываний от точки смешения двух параллельных потоков до места установки датчиков температуры жидкостного тракта на выходе каждой параллельной ветви и на общем выходе, а также в случае отсутствия теплоизоляции на этих участках жидкостного тракта, погрешность в определении вышеуказанных величин доходит до 20% от действительной величины расхода теплоносителя через ветвь.

Таким образом, существенным недостатком известного способа [1] контроля работы СТР КА является повышенная погрешность определения величины расхода теплоносителя через каждую параллельную ветвь.

Целью предлагаемого авторами технического решения является устранение вышеуказанного существенного недостатка.

Поставленная цель достигается тем, что в способе контроля работы СТР КА, включающем в себя телеметрические измерения обеспечиваемого электронасосным агрегатом суммарного расхода теплоносителя в жидкостном тракте системы, содержащем параллельные первую и вторую ветви, температур жидкостного тракта по показаниям датчиков температуры, установленных на каждом выходе из параллельных ветвей (t1; t2) и на общем выходе из них после точки смешения (t3), и на основе вышеуказанных телеметрических измерений определение величин расходов теплоносителя в указанных параллельных ветвях и соответствия их требуемым нормам, после сборки жидкостного тракта и установки датчиков температуры определяют объемы участков жидкостных трактов от места установки указанных датчиков температуры до точки смешения потоков теплоносителя на выходе из параллельных ветвей, покрывают эти участки теплоизоляцией и при контроле работы системы величины расходов теплоносителя в параллельных ветвях определяют в стабилизированном режиме работы приборов, установленных на панелях с параллельными ветвями, по формулам:

,

где - расход теплоносителя в жидкостном тракте первой ветви, см3/с;

- суммарный расход теплоносителя в жидкостном тракте, обеспечиваемый электронасосным агрегатом, при определении расходов теплоносителя в жидкостных трактах параллельных ветвей, в течение принятого промежутка времени, см3/с;

- температура жидкостного тракта на общем выходе из параллельных ветвей по данным телеметрических измерений датчика температуры t3 в момент времени , °С;

τ0 - момент времени при определении величины расходов теплоносителя в параллельных ветвях, с;

Vbd - объем теплоносителя на участке жидкостного тракта от точки смешения потоков теплоносителя на выходе из параллельных ветвей до места установки датчика температуры t3, см3;

- расчетная величина расхода теплоносителя через первую параллельную ветвь, равная при первом приближении половине величины суммарного расхода , а при последующих приближениях равная величине, определенной при предыдущем приближении, см3/с;

- температура жидкостного тракта на выходе из второй ветви по данным телеметрических измерений датчика температуры t2 в момент времени , °С;

Vbc - объем теплоносителя на участке жидкостного тракта второй ветви от точки смешения потоков теплоносителя до места установки датчика температуры t2, см3;

- температура жидкостного тракта на выходе из первой ветви по данным телеметрических измерений датчика температуры t1 в момент времени , °С;

Vab - объем теплоносителя на участке жидкостного тракта первой ветви от точки смешения потоков теплоносителя до места установки датчика температуры t1, см3;

- расход теплоносителя в жидкостном тракте второй ветви, см3/с,

что и является, по мнению авторов, существенными отличительными признаками предлагаемого авторами технического решения.

В результате анализа, проведенного авторами известной патентной и научно-технической литературы, предложенное сочетание существенных отличительных признаков заявляемого технического решения в известных источниках информации не обнаружено и, следовательно, известные технические решения не проявляют тех же свойств, что в заявляемом способе контроля работы СТР КА.

На фиг.2 изображена принципиальная схема реализации предложенного авторами технического решения, где: 1 - электронасосный агрегат (ЭНА); 2, 3 - северная и южная сотовые приборные панели с встроенными последовательно соединенными жидкостными коллекторами; 4, 5 - сотовые панели (расположенные между панелями 2, 3), на которых с обеих сторон установлены приборы спутника, а в сотовых панелях под ними размещены коллекторы 4.1 и 5.1, которые в каждой панели между собой соединены стыками 4.2 и 5.2 монтажной сваркой; в общем случае фактические суммарные длины и гидравлические сопротивления коллекторов в каждой панели отличны друг от друга; жидкостные тракты панелей образуют две параллельные ветви, которые на их входах и выходах (4.3 и 5.3) гидравлически объединены и являются частью жидкостного тракта 6 СТР; 7 - гидроаккумулятор; 8 - система телеметрических измерений; 1.1 -датчик суммарного расхода теплоносителя; 9, 10, 11 - датчики температуры; b - точка смешения двух потоков теплоносителя, идущих из первой (1) и второй (2) ветвей жидкостного тракта СТР; а, с, d - точки измерения температур жидкостного тракта датчиками температур t1, t2, t3, установленных на выходах первой и второй ветвей и на общем выходе их.

Предложенный способ контроля работы СТР КА включает в себя следующую последовательность выполняемых операций:

1. Осуществляют сборку КА, в том числе сборку жидкостного тракта СТР 6 на конструкции КА; на жидкостном тракте на выходах 4.3 и 5.3 из параллельных ветвей, встроенных в сотовые панели 4 и 5, и на жидкостном тракте после точки смешения двух потоков теплоносителя устанавливают датчики температуры t1, t2, t3.

2. Определяют объемы теплоносителя в жидкостных трактах участков ab, bc, bd.

3. Участки жидкостного тракта ab, bc, bd, содержащие датчики температуры t1, t2, t3, покрывают теплоизоляцией (чтобы снизить утечки тепла в космическое пространство: это обеспечивает повышение точности измерения расходов теплоносителя в параллельных ветвях).

4. При наземных испытаниях и в условиях орбитального функционирования КА включают в работу СТР (включают в работу ЭНА1), затем включают в работу приборы КА и при стабилизированном режиме работы приборов КА периодически контролируют работу СТР, используя показания телеметрических датчиков суммарного расхода теплоносителя 1.1 и температуры жидкостного тракта 9, 10, 11 (теплоносителя, циркулирующего в нем), для чего в некотором промежутке времени (например, в течение 2-3 минут) непрерывно (с частотой опроса, например, 0,5 с) фиксируют телеметрические данные по величинам суммарного расхода теплоносителя - , температур теплоносителя на выходах параллельных ветвей - t1, t2 и после точки смешения - t3.

5. Выбирают момент времени в середине промежутка времени (τ0), указанного в п.4.

6. Определяют величины расходов теплоносителя в параллельных ветвях для момента времени по п.5 (τ0) по формулам:

.

7. Сравнивают измеренные телеметрические данные t1, t2, t3, с допустимыми нормами. Затем, если указанные параметры удовлетворяют требуемым нормам, сравнивают полученные в п.6 данные по расходам теплоносителя в параллельных ветвях: они должны отличаться от половины измеренного суммарного расхода не более, чем |±5%|.

8. Если определенные данные по величинам расхода теплоносителя через параллельные ветви не удовлетворяют вышеуказанному требованию, выполняют второе приближение, взяв при осуществлении повторных расчетов по п.6 за расчетную величину

9. Выполняют операцию п.7.

10. Если результаты операций п.7 и п.9 положительны, то это означает, что СТР функционирует нормально.

Таким образом, как следует из вышеизложенного, в результате реализации предложенного авторами технического решения при контроле работы СТР КА, повышается точность определения величин расходов теплоносителя в параллельных ветвях жидкостного тракта СТР, необходимая для более достоверного прогноза и диагностики величин коэффициентов полезного действия приборов, установленных на сотовых панелях с параллельными ветвями, и, следовательно, тем самым достигается цель изобретения.

Похожие патенты RU2481253C2

название год авторы номер документа
СПОСОБ КОНТРОЛЯ РАБОТЫ СИСТЕМЫ ТЕРМОРЕГУЛИРОВАНИЯ КОСМИЧЕСКОГО АППАРАТА 2010
  • Бартенев Владимир Афанасьевич
  • Халиманович Владимир Иванович
  • Загар Олег Вячеславович
  • Туркенич Роман Петрович
  • Акчурин Владимир Петрович
RU2429997C1
СИСТЕМА ТЕРМОРЕГУЛИРОВАНИЯ КОСМИЧЕСКОГО АППАРАТА 2014
  • Тестоедов Николай Алексеевич
  • Халиманович Владимир Иванович
  • Синьковский Федор Константинович
  • Колесников Анатолий Петрович
  • Легостай Игорь Васильевич
  • Головенкин Евгений Николаевич
  • Анкудинов Александр Владимирович
  • Кривов Евгений Владимирович
  • Акчурин Георгий Владимирович
  • Шилкин Олег Валентинович
  • Попов Алексей Викторович
  • Юртаев Евгений Владимирович
  • Дмитриев Геннадий Валерьевич
  • Акчурин Владимир Петрович
  • Цивилев Иван Николаевич
RU2574499C1
СПОСОБ ЭКСПЛУАТАЦИИ ИМИТАТОРА СИСТЕМЫ ТЕРМОРЕГУЛИРОВАНИЯ КОСМИЧЕСКОГО АППАРАТА 2013
  • Халиманович Владимир Иванович
  • Головенкин Евгений Николаевич
  • Сорокваша Геннадий Григорьевич
  • Колесников Анатолий Петрович
  • Анкудинов Александр Владимирович
  • Акчурин Георгий Владимирович
  • Воловиков Виталий Гавриилович
  • Шилкин Олег Валентинович
  • Акчурин Владимир Петрович
  • Ураков Сергей Андреевич
RU2541612C2
Способ обеспечения нормального функционирования космического аппарата 2021
  • Колесников Анатолий Петрович
  • Шилкин Олег Валентинович
  • Бакуров Евгений Юрьевич
  • Кузнецов Анатолий Юрьевич
  • Акчурин Владимир Петрович
RU2774901C1
СИСТЕМА ТЕРМОРЕГУЛИРОВАНИЯ КОСМИЧЕСКОГО АППАРАТА 2014
  • Тестоедов Николай Алексеевич
  • Халиманович Владимир Иванович
  • Синьковский Федор Константинович
  • Колесников Анатолий Петрович
  • Легостай Игорь Васильевич
  • Головенкин Евгений Николаевич
  • Анкудинов Александр Владимирович
  • Шилкин Олег Валентинович
  • Кривов Евгений Владимирович
  • Акчурин Георгий Владимирович
  • Буткина Наталья Фаридовна
  • Кудрявцева Надежда Васильевна
  • Акчурин Владимир Петрович
RU2577925C2
СИСТЕМА ТЕРМОРЕГУЛИРОВАНИЯ КОСМИЧЕСКОГО АППАРАТА 2012
  • Халиманович Владимир Иванович
  • Лавров Виктор Иванович
  • Колесников Анатолий Петрович
  • Головенкин Евгений Николаевич
  • Захаров Сергей Александрович
  • Кузнецов Анатолий Юрьевич
  • Акчурин Владимир Петрович
  • Попугаев Михаил Михайлович
  • Габов Алексей Сергеевич
RU2513324C1
СПОСОБ ИЗГОТОВЛЕНИЯ ЖИДКОСТНОГО КОНТУРА СИСТЕМЫ ТЕРМОРЕГУЛИРОВАНИЯ КОСМИЧЕСКОГО АППАРАТА 2014
  • Тестоедов Николай Алексеевич
  • Халиманович Владимир Иванович
  • Синьковский Федор Константинович
  • Колесников Анатолий Петрович
  • Легостай Игорь Васильевич
  • Головенкин Евгений Николаевич
  • Анкудинов Александр Владимирович
  • Акчурин Георгий Владимирович
  • Кривов Евгений Владимирович
  • Шилкин Олег Валентинович
  • Романьков Евгений Владимирович
  • Окулова Ирина Александровна
  • Акчурин Владимир Петрович
  • Леонтьев Денис Андреевич
RU2574104C1
СПОСОБ КОНТРОЛЯ КАЧЕСТВА СИСТЕМЫ ТЕРМОРЕГУЛИРОВАНИЯ КОСМИЧЕСКОГО АППАРАТА 2015
  • Синьковский Федор Константинович
  • Колесников Анатолий Петрович
  • Легостай Игорь Васильевич
  • Анкудинов Александр Владимирович
  • Акчурин Георгий Владимирович
  • Кривов Евгений Владимирович
  • Бакуров Евгений Юрьевич
  • Акчурин Владимир Петрович
RU2648519C2
СПОСОБ ИЗГОТОВЛЕНИЯ СИСТЕМЫ ТЕРМОРЕГУЛИРОВАНИЯ КОСМИЧЕСКОГО АППАРАТА 2011
  • Халиманович Владимир Иванович
  • Лавров Виктор Иванович
  • Колесников Анатолий Петрович
  • Акчурин Георгий Владимирович
  • Афонин Сергей Сергеевич
  • Танасиенко Федор Владимирович
  • Рудько Александр Александрович
  • Анкудинов Александр Владимирович
  • Акчурин Владимир Петрович
RU2481255C2
СПОСОБ ДИАГНОСТИКИ РАБОТОСПОСОБНОСТИ СИСТЕМЫ ТЕРМОРЕГУЛИРОВАНИЯ КОСМИЧЕСКОГО АППАРАТА 2018
  • Колесников Анатолий Петрович
  • Легостай Игорь Васильевич
  • Шилкин Олег Валентинович
  • Акчурин Владимир Петрович
  • Попов Алексей Викторович
  • Дмитриев Геннадий Валерьевич
  • Белицкий Владимир Владимирович
  • Попов Дмитрий Викторович
  • Бакуров Евгений Юрьевич
  • Соколов Сергей Николаевич
  • Кузнецов Анатолий Юрьевич
RU2690827C1

Иллюстрации к изобретению RU 2 481 253 C2

Реферат патента 2013 года СПОСОБ КОНТРОЛЯ РАБОТЫ СИСТЕМЫ ТЕРМОРЕГУЛИРОВАНИЯ КОСМИЧЕСКОГО АППАРАТА

Изобретение относится к системам терморегулирования (СТР), преимущественно телекоммуникационных спутников. Способ включает телеметрические измерения (напр., с частотой опроса 0,5 с в принятом промежутке времени) таких параметров СТР, как суммарный расход теплоносителя в жидкостном тракте и температуры в его точках. Тракт включает в себя параллельные ветви, на выходах которых имеются датчики температуры. Третий датчик температуры установлен на общем выходе. Суммарный расход теплоносителя обеспечивается электронасосным агрегатом. При изготовлении СТР покрывают теплоизоляцией участки тракта между датчиками и определяют объем теплоносителя между точками установки этих датчиков и точкой смешения двух потоков теплоносителя из параллельных ветвей. По данным измерений действительные значения расходов теплоносителя в параллельных ветвях определяют по формулам, учитывающим транспортные запаздывания при измерениях датчиками температур. Техническим результатом изобретения является повышение точности определения расходов теплоносителя в параллельных ветвях и тем самым достоверности диагностики и прогноза величин коэффициентов полезного действия приборов, установленных на сотовых панелях СТР с параллельными ветвями. 2 ил.

Формула изобретения RU 2 481 253 C2

Способ контроля работы системы терморегулирования космического аппарата, включающий в себя телеметрические измерения обеспечиваемого электронасосным агрегатом суммарного расхода теплоносителя в жидкостном тракте системы, содержащем параллельные первую и вторую ветви, температур жидкостного тракта по показаниям датчиков температуры, установленных на каждом выходе из параллельных ветвей (t1; t2) и на общем выходе из них после точки смешения (t3), и на основе вышеуказанных телеметрических измерений определение величин расходов теплоносителя в указанных параллельных ветвях и соответствия их требуемым нормам, отличающийся тем, что после сборки жидкостного тракта и установки датчиков температуры определяют объемы участков жидкостных трактов от места установки указанных датчиков температуры до точки смешения потоков теплоносителя на выходе из параллельных ветвей, покрывают эти участки теплоизоляцией и при контроле работы системы величины расходов теплоносителя в параллельных ветвях в стабилизированном режиме работы приборов, установленных на панелях с параллельными ветвями, определяют по формулам:


где - расход теплоносителя в жидкостном тракте первой ветви, см3/с;
- суммарный расход теплоносителя в жидкостном тракте, обеспечиваемый электронасосным агрегатом, при определении расходов теплоносителя в жидкостных трактах параллельных ветвей в течение принятого промежутка времени, см3/с;
- температура жидкостного тракта на общем выходе из параллельных ветвей по данным телеметрических измерений датчика температуры t3 в момент времени °C;
τ0 - момент времени при определении величины расходов теплоносителя в параллельных ветвях, с;
Vbd - объем теплоносителя на участке жидкостного тракта от точки смешения потоков теплоносителя на выходе из параллельных ветвей до места установки датчика температуры t3, см3;
- расчетная величина расхода теплоносителя через первую параллельную ветвь, равная в первом приближении половине величины суммарного расхода , а в последующих приближениях равная величине, определенной в предыдущем приближении, см3/с;
- температура жидкостного тракта на выходе из второй ветви по данным телеметрических измерений датчика температуры t2 в момент времени °C;
Vbc - объем теплоносителя на участке жидкостного тракта второй ветви от точки смешения потоков теплоносителя до места установки датчика температуры t2, см3;
- температура жидкостного тракта на выходе из первой ветви по данным телеметрических измерений датчика температуры t1 в момент времени , °С;
Vab - объем теплоносителя на участке жидкостного тракта первой ветви от точки смешения потоков теплоносителя до места установки датчика температуры t1, см3;
- расход теплоносителя в жидкостном тракте второй ветви, см3/с.

Документы, цитированные в отчете о поиске Патент 2013 года RU2481253C2

СПОСОБ КОНТРОЛЯ РАБОТЫ СИСТЕМЫ ТЕРМОРЕГУЛИРОВАНИЯ 1999
  • Акчурин В.П.
  • Загар О.В.
  • Калинина В.А.
  • Туркенич Р.П.
  • Сергеев Ю.Д.
  • Талабуев Е.С.
RU2164884C2
СПОСОБ УПРАВЛЕНИЯ РАСХОДОМ ХЛАДАГЕНТА В КАПЕЛЬНОМ РАДИАТОРЕ КОНТУРА ТЕРМОРЕГУЛИРОВАНИЯ КОСМИЧЕСКОГО АППАРАТА 2009
  • Ковтун Владимир Семенович
  • Синявский Виктор Васильевич
  • Костюк Любовь Николаевна
  • Сагина Жанна Валерьевна
  • Грибков Александр Сергеевич
RU2400408C1
СИСТЕМА ТЕРМОРЕГУЛИРОВАНИЯ КОСМИЧЕСКОГО АППАРАТА 2008
  • Халиманович Владимир Иванович
  • Акчурин Владимир Петрович
  • Алексеев Николай Григорьевич
  • Воловиков Виталий Гавриилович
  • Доставалов Александр Валентинович
  • Загар Олег Вячеславович
  • Колесников Анатолий Петрович
  • Сергеев Юрий Дмитриевич
  • Шилкин Олег Валентинович
RU2386572C1
СИСТЕМА ТЕРМОРЕГУЛИРОВАНИЯ ОРБИТАЛЬНОЙ СТАНЦИИ 1987
  • Абакумов Леонид Григорьевич
  • Вивденко Александр Александрович
  • Грезин Александр Кузьмич
  • Деньгин Валерий Георгиевич
  • Кропотин Юрий Геннадьевич
  • Куркин Владимир Нилович
  • Андреев Владимир Васильевич
  • Маслаков Владимир Александрович
  • Мифтахов Рафик Мугалимович
  • Никонов Алексей Андреевич
  • Овчинников Виктор Сергеевич
  • Пучинин Александр Васильевич
  • Романенко Юрий Викторович
  • Сургучев Олег Владимирович
  • Цихоцкий Владислав Михайлович
  • Юрин Юрий Андреевич
SU1839913A1
УСТРОЙСТВО ДЛЯ АВТОМАТИЧЕСКОГО КОНТРОЛЯ БЕЗОПАСНОСТИ ДВИЖЕНИЯ ЭЛЕКТРОВОЗА 2004
  • Енакиев Л.В.
RU2264317C2
JP 2001315700 A, 13.11.2001.

RU 2 481 253 C2

Авторы

Халиманович Владимир Иванович

Лавров Виктор Иванович

Колесников Анатолий Петрович

Акчурин Георгий Владимирович

Афонин Сергей Сергеевич

Танасиенко Федор Владимирович

Рудько Александр Александрович

Анкудинов Александр Владимирович

Акчурин Владимир Петрович

Даты

2013-05-10Публикация

2011-08-05Подача