БИОДЕГРАДИРУЕМЫЕ СОПОЛИМЕРЫ НА ОСНОВЕ СТИРОЛА И ПОЛИАНГЕЛИКАЛАКТОНА Российский патент 2013 года по МПК C08F212/08 C08G63/08 

Описание патента на изобретение RU2482134C1

Заявляемое изобретение относится к области биодеградируемых полимерных материалов и может быть использовано для производства биодеградируемых полимеров, применяемых в медицине, для производства упаковочных изделий, тары и др. Более узкая область заявляемого изобретения - полистирол, модифицированный звеньями полиангеликалактона, образующими полиэфирные связи.

Альфа-ангеликалактон (5-метил-2(3H)-фуранона, АЛ) имеет в своей структуре две функциональные группы, способные к полимеризации: двойную связь и сложноэфирную группировку. Поэтому он потенциально способен полимеризоваться по двум маршрутам, в полиэфиры (1) и в полиолефины (2):

Известен полимерный материал, получаемый сополимеризацией альфа-ангеликалактона с метиладамантилметакрилатом, малеиновым ангидридом, норборненом [US 6537727, опубл. 11.04.2002]. Сополимеризация проводится путем радикального инициирования. И приводит к полиолефину, а не полиэфиру. Получаемый в соответствии с известным изобретением полимер обладает олефиновой структурой (2) и поэтому недостатком этого полимера является его неспособность к биодеградации, т.е. медленному разрушению под действием различных ферментативных систем.

Известен сополимер альфа-ангеликалактона с полигидроксистиреном [US 6492087, опубл. 10.12.2002]. Полимер также имеет межмономерные C-C-связи, образующиеся при раскрытии двойных связей фуранового кольца (2), и практически не поддается биодеградации.

Известны полимеры альфа-ангеликалактона полиэфирной природы, обладающие выраженной способностью к биодеградации микроорганизмами, даже дрожжевыми [RU 2309163, опубл. 27.10.2007]. Известные полимеры получают полимеризацией АЛ под действием сильноосновных катализаторов (бутилата натрия).

Недостатками известных полимеров являются их низкие прочностные показатели: это жидкости или вязкие смолы.

Наиболее близким к предлагаемому полимерному материалу является сополимер, получаемый радикальной сополимеризацией полиангеликалактона с небольшими количествами стирола (1-5 масс.%) под действием эфирата трифторида бора [Тарабанько В.Е., Кайгородов К.Л. Новые биоразлагаемые полимеры на основе α-ангеликалактона. Химия в интересах устойчивого развития. 2010, т.18, вып.3, с.395-403]. По разрушающему напряжению и пределу текучести при растяжении полученные сополимеры значительно превосходят требования ГОСТ к полистиролу общего назначения.

Основными недостатками данного полимерного материала являются его высокая стоимость и большие значения водопоглощения, что ограничивает широкое использование в качестве упаковочного материала. Отмеченные недостатки полимерного материала обусловлены его существенным признаком - наличием в структуре сополимера фрагментов полиангеликалактона в больших концентрациях, а именно: 95-99%. Ангеликалактон является гидрофильным и относительно дорогим по сравнению со стиролом мономером, и эти свойства обусловливают недостатки известного вещества, сополимера.

Задача заявляемого изобретения - создание полимерного материала на основе стирола и полиангеликалактона, обладающего способностью к биодеградации, более дешевого и обладающего меньшим водопоглощением.

Поставленная задача достигается тем, что в биодеградируемых сополимерах стирола и полиангеликалактона, которые характеризуются тем, что они представляют собой стирол, модифицированный полиангеликалактоном, содержащим полиэфирные межзвенные связи, согласно изобретению, имеется следующее соотношение фрагментов в структуре сополимера, масс.%:

полиангеликалактон 0,1-20 стирол остальное

В отличие от прототипа заявляемые биодеградируемые сополимеры стирола и полиангеликалактона содержат в своей структуре намного большее количество стирола, 80-99,9%, что обусловливает их низкие стоимостные показатели и малое водопоглощение. Получаемые в соответствии с заявляемым изобретением продукты, однако, сохраняют основное их преимущество - способность к биодеградации. Названные технические результаты являются следствием различия количественного состава предлагаемого вещества и прототипа, т.е. отличительного признака изобретения. Это означает, что технические результаты и отличительные признаки изобретения находятся в причинно-следственной связи между собой.

Положительные эффекты заявляемого изобретения проявляются в представленном интервале содержаний полиангеликалактона в блок-сополимере со стиролом 0,1-20 масс.%.

При содержании стирола в блок-сополимере более 99,9% получаемый сополимер стирола теряет способность к биодеградации, а при содержании полиангеликалактона в блок-сополимере более 20% резко возрастает его водопоглощение. Таким образом, за границами заявляемого диапазона содержаний стирола в патентуемом блок-сополимере стирола и полиангеликалактона технические результаты предлагаемого изобретения теряются.

Предлагаемое изобретение и его технический результат иллюстрируются нижеприведенными примерами.

Пример 1. В реакционный сосуд помещали свежеперегнанный стирол - 80 молярных % (8,302 г), полиангеликалактон с Mw 12000 - 20 молярных % (1,96 г) и трипероксид ацетона (0,220 г). Смесь нагревали до 130°C, далее с течением времени вязкость полимеризующейся смеси возрастала, и температуру поднимали вплоть до 210°C, таким образом, чтобы масса оставлась вязкотекучей. Полученный полимер очистили экстракцией диэтиловым эфиром в течение 8 часов, затем летучие вещества удалили нагреванием до 80°C в течение 4 часов при давлении 2 мм рт.ст. Получено 8,635 г твердого вещества. Mw 70000, плотность - 1060 кг/м3, удлинение при разрыве - 37%, разрушающее напряжение - 37 МПа, предел текучести - 26 МПа, водопоглощение - 0,48%.

Образец полимера размером 5×5×5 мм и образец тщательно высушеной серой лесной почвы объемом 15 мл помещали в стеклянные пробирки. Пробирки герметично укупоривали силиконовыми пробками с возможностью микрокапельного полива и отбора газовой фазы. Увлажнение системы осуществлялось микрокапельным поливом стерильной синтетической питательной средой. В процессе культивирования происходило постепенное замещение образца полимера на органический активный конгломерат с незначительными включениями фрагментов неразрушенного полимера. В течение 20 недель образец разрушился практически полностью, до мельчайших вкраплений полимера в органическом конгломерате.

Пример 2. В реакционный сосуд помещали свежеперегнанный стирол - 99,9 молярных % (10,390 г), полиангеликалактон с Mw 10000 - 0,1 молярных % (0,010 г) и трипероксид ацетона (0,220 г). Смесь нагревали до 130°C, далее с течением времени вязкость полимеризующейся смеси возрастала, и температуру поднимали вплоть до 210°c, таким образом, чтобы масса оставлась вязкотекучей. Полученный полимер очистили экстракцией диэтиловым эфиром в течение 8 часов, затем летучие вещества удалили нагреванием до 80°C в течение 4 часов при давлении 2 мм рт.ст. Получено 9,77 г твердого вещества. Mw 120000, плотность - 1048 кг/м3, удлинение при разрыве - 1,23%, разрушающее напряжение - 38 МПа, предел текучести - 29 МПа, водопоглощение - 0,31%.

Образец полимера размером 5×5×5 мм и образец тщательно высушеной серой лесной почвы объемом 15 мл помещали в стеклянные пробирки. Пробирки герметично укупоривали силиконовыми пробками с возможностью микрокапельного полива и отбора газовой фазы. Увлажнение системы осуществлялось микрокапельным поливом стерильной синтетической питательной средой. В процессе культивирования происходило постепенное замещение образца полимера на органический активный конгломерат с незначительными включениями фрагментов неразрушенного полимера. В течение 48 недель образец частично разрушился до вкраплений полимера в органическом конгломерате.

Пример 3. В реакционный сосуд помещали свежеперегнанный стирол - 98 молярных % (10,192 г), полиангеликалактон с Mw 12000 - 2 молярных % (0,196 г) и трипероксид ацетона (0,220 г). Смесь нагревали до 130°C, далее с течением времени вязкость полимеризующейся смеси возрастала, и температуру поднимали вплоть до 210°C, таким образом, чтобы масса оставлась вязкотекучей. Полученный полимер очистили экстракцией диэтиловым эфиром в течение 8 часов, затем летучие вещества удалили нагреванием до 8°C в течение 4 часов при давлении 2 мм рт.ст. Получено 9,04 г твердого вещества. Mw 115000, плотность - 1048 кг/м3, удлинение при разрыве - 1,23%, разрушающее напряжение - 38 МПа, предел текучести - 29 МПа, водопоглощение - 0,34%.

Образец полимера размером 5×5×5 мм и образец тщательно высушеной серой лесной почвы объемом 15 мл помещали в стеклянные пробирки. Пробирки герметично укупоривали силиконовыми пробками с возможностью микрокапельного полива и отбора газовой фазы. Увлажнение системы осуществлялось микрокапельным поливом стерильной синтетической питательной средой. В процессе культивирования происходило постепенное замещение образца полимера на органический активный конгломерат с незначительными включениями фрагментов неразрушенного полимера. В течение 28 недель образец разрушился практически полностью, до мельчайших вкраплений полимера в органическом конгломерате.

Пример 4 (прототип). В реакционный сосуд помещали свежеперегнанный стирол - 5 молярных % (0,52 г), полиангеликалактон с Mw 9000 - 95 молярных % (9,31 г) и трипероксид ацетона (0,220 г). Смесь нагревали до 130°C, далее с течением времени вязкость полимеризующейся смеси возрастала, и температуру поднимали вплоть до 210°C, таким образом, чтобы масса оставлась вязкотекучей. Полученный полимер очистили экстракцией диэтиловым эфиром в течение 8 часов, затем летучие вещества удалили нагреванием до 80°C в течение 4 часов при давлении 2 мм рт.ст. Получено 7,47 г твердого вещества. Mw 17000, плотность - 1100 кг/м3, удлинение при разрыве - 608%, разрушающее напряжение - 23 МПа, предел текучести - 20 МПа, водопоглощение - 1,64%.

Образец полимера размером 5×5×5 мм и образец тщательно высушеной серой лесной почвы объемом 15 мл помещали в стеклянные пробирки. Пробирки герметично укупоривали силиконовыми пробками с возможностью микрокапельного полива и отбора газовой фазы. Увлажнение системы осуществлялось микрокапельным поливом стерильной синтетической питательной средой. В процессе культивирования происходило постепенное замещение образца полимера на органический активный конгломерат с незначительными включениями фрагментов неразрушенного полимера. В течение 10 недель указанный образец разрушился практически полностью, до мельчайших вкраплений полимера в органическом конгломерате.

Пример 5. В реакционный сосуд помещали свежеперегнанный стирол - 99,95 молярных % (10,395 г), полиангеликалактон с Mw 12000 - 0,05 молярных % (0,005 г) и трипероксид ацетона (0,220 г). Смесь нагревали до 130°c, далее с течением времени вязкость полимеризующейся смеси возрастала, и температуру поднимали вплоть до 210°C, таким образом, чтобы масса оставлась вязкотекучей. Полученный полимер очистили экстракцией диэтиловым эфиром в течение 8 часов, затем летучие вещества удалили нагреванием до 80°C в течение 4 часов при давлении 2 мм рт.ст. Получено 9,51 г твердого вещества. Mw 120000, плотность - 1048 кг/м3, удлинение при разрыве - 1,23%, разрушающее напряжение - 38 МПа, предел текучести - 29 МПа, водопоглощение - 0,31%.

Образец полимера размером 5×5×5 мм и образец тщательно высушеной серой лесной почвы объемом 15 мл помещали в стеклянные пробирки. Пробирки герметично укупоривали силиконовыми пробками с возможностью микрокапельного полива и отбора газовой фазы. Увлажнение системы осуществлялось микрокапельным поливом стерильной синтетической питательной средой. В процессе культивирования в течение 50 недель разрушения образца не отмечено.

Таким образом, создан полимерный материал на основе стирола и полиангеликалактона, обладающий способностью к биодеградации, более дешевый и обладающий меньшим водопоглощением.

Похожие патенты RU2482134C1

название год авторы номер документа
КОМПОЗИЦИОННЫЙ БИОДЕГРАДИРУЕМЫЙ МАТЕРИАЛ НА ОСНОВЕ ЦЕЛЛЮЛОЗЫ И ПОЛИЭФИРА 2019
  • Тарабанько Валерий Евгеньевич
  • Кайгородов Константин Леонидович
  • Смирнова Марина Александровна
  • Тарабанько Николай Валерьевич
  • Маляр Юрий Николаевич
RU2687915C1
КОМПОЗИЦИОННЫЙ БИОДЕГРАДИРУЕМЫЙ МАТЕРИАЛ НА ОСНОВЕ ЦЕЛЛЮЛОЗЫ И ПОЛИАНГЕЛИКАЛАКТОНА 2020
  • Тарабанько Валерий Евгеньевич
  • Кайгородов Константин Леонидович
  • Смирнова Марина Александровна
  • Тарабанько Николай Валерьевич
  • Маляр Юрий Николаевич
  • Вигуль Дмитрий Олегович
RU2740753C1
ПРОДУКТЫ ПОЛИМЕРИЗАЦИИ АЛЬФА-АНГЕЛИКАЛАКТОНА 2006
  • Тарабанько Валерий Евгеньевич
  • Кайгородов Константин Леонидович
RU2309163C1
СПОСОБ ИЗГОТОВЛЕНИЯ БИОДЕГРАДИРУЕМЫХ МЕМБРАН ДЛЯ ПРЕДОТВРАЩЕНИЯ ОБРАЗОВАНИЯ СПАЕК ПОСЛЕ КАРДИОХИРУРГИЧЕСКИХ ОПЕРАЦИЙ 2013
  • Кудрявцева Юлия Александровна
  • Насонова Марина Владимировна
  • Барбараш Леонид Семенович
RU2525181C1
БИОДЕГРАДИРУЕМАЯ ПОЛИМЕРНАЯ КОМПОЗИЦИЯ 2011
  • Йосикава Сеиси
  • Катаяма Цутаки
  • Когуре Масахито
  • Ямане Казуюки
RU2542249C2
СПОСОБ ПОЛУЧЕНИЯ ДИЕНОВЫХ ПОЛИМЕРОВ ИЛИ СТАТИСТИЧЕСКИХ ВИНИЛАРЕН-ДИЕНОВЫХ СОПОЛИМЕРОВ 2011
  • Содду Лука
  • Венери Габриеле
RU2569308C2
УСАДОЧНЫЕ ЭТИКЕТКИ ИЗ ОРИЕНТИРОВАННОЙ ПОЛИСТИРОЛЬНОЙ ПЛЕНКИ, ВКЛЮЧАЮЩЕЙ МЕЛКИЕ ЧАСТИЦЫ КАУЧУКА, НИЗКОЕ СОДЕРЖАНИЕ ГЕЛЯ ЧАСТИЦ КАУЧУКА И БЛОК-СОПОЛИМЕРЫ 2006
  • Макги Роберт Л.
  • Скапик Стефен Дж. Iii
RU2415162C2
ПОЛИМЕРНАЯ КОМПОЗИЦИЯ ДЛЯ ПОЛУЧЕНИЯ БИОДЕГРАДИРУЕМЫХ ФОРМОВОЧНЫХ ИЗДЕЛИЙ ИЗ РАСПЛАВА 2011
  • Студеникина Любовь Николаевна
  • Балакирева Наталья Андреевна
  • Протасов Артем Викторович
  • Баймурзаев Александр Сергеевич
  • Богатырев Василий Юрьевич
  • Корчагин Михаил Владимирович
  • Скляднев Евгений Владимирович
RU2446191C1
Композиционный материал с ускоренным биоразложением и повышенной термостабильностью 2023
  • Алексанова Елизавета Александровна
  • Масталыгина Елена Евгеньевна
  • Ольхов Анатолий Александрович
  • Аншин Сергей Михайлович
  • Овчинников Василий Андреевич
  • Кузьмин Антон Михайлович
RU2826497C1
NdBR С ПАДЕНИЕМ МОЛЯРНОЙ МАССЫ 2014
  • Клоппенбург Хайке
  • Ле-Заттлер Алисия
RU2660853C2

Реферат патента 2013 года БИОДЕГРАДИРУЕМЫЕ СОПОЛИМЕРЫ НА ОСНОВЕ СТИРОЛА И ПОЛИАНГЕЛИКАЛАКТОНА

Настоящее изобретение относится к области получения биоразлагаемых полимеров. Описаны биодеградируемые сополимеры стирола и полиангеликалактона, характеризующиеся тем, что они представляют собой стирол, модифицированный полиангеликалактоном, содержащим полиэфирные межзвенные связи, при следующем соотношении фрагментов, масс.%: полиангеликалактон 0,1-20; стирол - остальное. Технический результат - получение полимера на основе стирола и полиангеликалактона, обладающего способностью к биодеградации, меньшим водопоглощением, а также снижением себестоимости полимера. 5 пр.

Формула изобретения RU 2 482 134 C1

Биодеградируемые сополимеры стирола и полиангеликалактона, характеризующиеся тем, что они представляют собой стирол, модифицированный полиангеликалактоном, содержащим полиэфирные межзвенные связи, при следующем соотношении фрагментов, мас.%:
полиангеликалактон 0,1-20 стирол остальное

Документы, цитированные в отчете о поиске Патент 2013 года RU2482134C1

Тарабанько В.Е., Кайгородов К.Л
Новые биоразлагаемые полимеры на основе а-ангеликалактона
Химия в интересах устойчивого развития, 18 (2010), с.395-403
Tadamichi Hirabayashi and Kenji Yokota "Copolymerization behavior of angelica lactone and styrene in the presence of organoaluminium chlorides", Polymer Journal, v.14, №10 (1982) p.789-796.

RU 2 482 134 C1

Авторы

Кайгородов Константин Леонидович

Тарабанько Валерий Евгеньевич

Ильин Александр Анатольевич

Даты

2013-05-20Публикация

2012-05-03Подача