Изобретение относится к области центробежного компрессоростроения, в частности вакуумным центробежным компрессорам.
Известны конструкции контактных уплотнений подвижных соединений, обеспечивающие высокую герметизацию полостей в машинах, содержащих газы и жидкости при высоких давлениях или под вакуумом. Это сальники, манжеты, резиновые пружинные кольца, торцевые уплотнения и т.д. В указанных конструкциях уплотнение между подвижной и неподвижной поверхностями достигается непосредственным соприкосновением (контактом) поверхностей (см, например, Орлов П.И. «Основы конструирования» Справочно-методическое пособие, Кн.1, М.: Машиностроение, стр.472-482).
Недостатками известного уплотнения является: ограниченность допустимых скоростей относительного движения уплотняемых поверхностей, изнашиваемость и потеря уплотнительных свойств с износом, наличие утечек газа в атмосферу.
По указанным причинам контактные уплотнения не нашли самостоятельного широкого применения в центробежных компрессорах. Тем не менее, задача герметизации проточной части компрессора при стоянке сохраняет свою актуальность в вакуумных компрессорах и технологических процессах, где требуется сохранение постоянства компонентного состава газа и исключение выбросов технологического газа в атмосферу. Для решения этой задачи в центробежных компрессорах применяют специальные уплотнения комбинированного типа, сочетающие в конструкции бесконтактные и контактные уплотнения.
Известны конструкции торцевых газодинамических уплотнений, содержащие уплотнительную пару, включающую деталь с уплотняемой поверхностью (вращающееся кольцо) и уплотнительный узел (аксиально-подвижное кольцо), подпружиненный в осевом направлении. При стоянке (отсутствии вращения) аксиально-подвижное кольцо прижимается пружинами и давлением газа к детали с уплотняемой поверхностью, осуществляя контактное уплотнение. При запуске компрессора разделение поверхностей трения колец уплотнений происходит уже при достижении окружной скорости порядка 0,6 м/сек, а при обеспечении достаточной газостатической составляющей раскрывающей силы бесконтактный режим наступает сразу после подачи газа под давлением до начала вращения вала (см., например, И.Г.Хисамеев, В.А.Максимов, Г.С.Баткис, Я.З.Гузельбаев «Проектирование и эксплуатация промышленных центробежных компрессоров» - Казань: Изд-во «ФЭН», 2010, стр.158-166).
Так как эти уплотнения при стоянке не являются абсолютно герметичными по геометрическим параметрам - плоскостность уплотнительных торцевых поверхностей 0,002 мм, поэтому, в случае необходимости полной «абсолютной» герметичности, они не могут использоваться в качестве стояночных уплотнений.
Также известно стояночное уплотнение, содержащее корпус, уплотнительную пару, включающую установленный в корпусе неподвижный элемент и установленный на роторе подвижный элемент, фиксатор стопорения, неподвижный в осевом направлении вал, закрепленный на роторе фланец, соединенный по резьбе и пружиной кручения с валом (см. Патент RU 2028524, опубликован 09.02.1995).
Недостатком этого стояночного уплотнения является сложность настройки и регулирования, большие габариты, нестабильность удельного давления в торцовой паре, недостаточная герметичность уплотнения, невысокая надежность при использовании разъемного резьбового соединения.
Техническим результатом изобретения является повышение герметичности проточной части компрессора при его стоянке, исключение утечек технологичного газа в атмосферу, сохранение компонентов состава газа внутри газового контура при стоянке компрессора, повышение надежности и срока службы уплотнения.
Технический результат изобретения достигается благодаря тому, что стояночное уплотнение центробежного компрессора содержит уплотнительную пару, включающую деталь роторной части компрессора с уплотняемой поверхностью и уплотнительный узел, установленный на статорной части компрессора и подпружиненный в осевом направлении, при этом уплотнительный узел выполнен в виде кольцевого поршня, установленного в кольцевом пазу статорной части, который сообщен с каналом подвода сжатого газа, причем на торцевой поверхности кольцевого поршня установлен торцевой уплотнительный элемент с возможностью контакта с уплотняемой поверхностью детали роторной части, а на цилиндрических поверхностях кольцевого поршня установлены поршневые уплотнительные элементы, при этом кольцевой поршень подпружинен в направлении от уплотняемой поверхности детали роторной части.
Кроме того, расположенный в кольцевом пазу статорной части торец кольцевого поршня может иметь кольцевую канавку для подвода сжатого газа.
Кроме того, кольцевой поршень может иметь в осевом сечении ступенчатую форму, причем первая ступень расположена в кольцевом пазу статорной части компрессора, на второй ступени расположен торцевой уплотнительный элемент, а кольцевой поршень подпружинен посредством упругого элемента, расположенного между упором статорной части компрессора и поверхностью первой ступени кольцевого поршня.
Изобретение поясняется чертежом, на котором показана конструкция предлагаемого стояночного уплотнения.
Стояночное уплотнение центробежного компрессора содержит контактную уплотнительную пару, включающую деталь 1 роторной части 2 с уплотняемой поверхностью 3 и уплотнительный узел, выполненный в виде кольцевого поршня 4, установленного на статорной части 5 (торцевой крышке) компрессора. Кольцевой поршень 4 установлен в кольцевом пазу 6 статорной части 5 компрессора и подпружинен в осевом направлении от уплотняемой поверхности 2 детали 1 роторной части 3 посредством упругого элемента 7, выполненного, например, в виде пружины, рессора, сильфона и т.п.Кольцевой паз 6 сообщен с каналом 8 для подвода сжатого газа извне. Кольцевой поршень 4 имеет в осевом сечении ступенчатую форму, причем первая ступень 9 расположена в кольцевом пазу 6 статорной части 5 и имеет на торцевой поверхности кольцевую канавку 10 для подвода сжатого газа, а на цилиндрических поверхностях имеет кольцевые канавки 11, в которых расположены вторичные поршневые уплотнительные элементы 12, уплотняющие цилиндрические поверхности поршня 4 и кольцевого паза 6. Вторая ступень 13 кольцевого поршня 4 на своем торце имеет кольцевую канавку 14, в которой расположен вторичный торцевой уплотнительный элемент 15, контактирующий с уплотняемой поверхностью 3 при стояночном положении компрессора.
Ступень 9 кольцевого поршня 4 с цилиндрической поверхностью ступени 13 образует кольцевой уступ, в котором между опорной поверхностью 16 ступени 9 и упором 17 (выступом) статорной части 5 компрессора расположен упругий элемент 7, упирающийся с одной стороны в поверхность 16, а с другой стороны в упор 17. Упор 17 закреплен на статорной части 5 посредством крепежного элемента 18 и удерживает упругий элемент 7 от выпадения.
Работает стояночное уплотнение центробежного компрессора следующим образом. При вращении роторной части 2 (ротора) с уплотняемой поверхностью 3 кольцевой поршень 4 находится в отжатом положении от уплотняемой поверхности 2 за счет действия пружины 7, т.е. нахождения ее в спокойном состоянии, образуя осевой зазор δа между статорными и роторными деталями компрессора. После остановки компрессора по каналу 8 подачи сжатого газа в кольцевой паз 6 и канавку 10 поступает под давлением сжатый газ из стороннего источника (баллона), создающий усилие на поршень 4, превышающее сумму сил, действующих на поршень 4 от давления газа внутри проточной части и усилия упругого элемента 7. Кольцевой поршень 4 перемещается до полного перекрытия осевого зазора δа, прижимается к уплотняемой поверхности 3, обеспечивая герметичность проточной части компрессора. Условие перекрытия зазора δа:
f3*p3>f2*p2+c*δa,
где f3 - площадь торцевой поверхности кольцевого поршня 4, находящейся под давлением сжатого газа (из баллона);
f2 - площадь торцевой поверхности кольцевого поршня 4, находящейся под давлением р2 газа в проточной части компрессора;
с - жесткость упругого элемента 7;
δа - величина осевого зазора в стояночном уплотнении.
Пример конкретного исполнения
Для вакуумного компрессора при проверке проточной части на герметичность создается давление внутри корпуса сжатия, равное 10 Па (0,00001 кгс/см2). При даже без подачи сжатого воздуха в паз 6 и канавку 10 на кольцевой поршень 4 действует усилие, примерно, 190 кгс, прижимающее поршень 4 к уплотняемой поверхности 3. Следовательно, усилие с*δа, создаваемое упругим элементом 7, должно быть более 190 кгс, но не менее 300 кгс. Тогда при подаче сжатого воздуха давлением 2 кгс/см2 в паз 6 стояночное уплотнение будет надежно перекрывать зазор δа, а при сбросе воздуха из паза 6 в атмосферу, наоборот, открывать зазор δа.
название | год | авторы | номер документа |
---|---|---|---|
КАМЕРА ОБЪЕМНОЙ РОТОРНОЙ МАШИНЫ (ВАРИАНТЫ) И СТУПЕНЬ ОБЪЕМНОЙ РОТОРНОЙ МАШИНЫ | 2006 |
|
RU2383745C2 |
МОДУЛЬНЫЙ ЭЛЕКТРОПРИВОДНОЙ КОМПРЕССОРНЫЙ АГРЕГАТ | 2011 |
|
RU2461738C1 |
Торцевое уплотнение вала турбомашины | 1989 |
|
SU1772383A1 |
Уплотнение врашающегося вала | 1980 |
|
SU966369A1 |
ИСТИРАЕМОЕ УПЛОТНЕНИЕ С ОСЕВЫМ СМЕЩЕНИЕМ | 2010 |
|
RU2550217C2 |
ДВУХПОТОЧНЫЙ ТУРБОМОЛЕКУЛЯРНЫЙ ВАКУУМНЫЙ НАСОС С ГИБРИДНЫМИ ПРОТОЧНЫМИ ЧАСТЯМИ | 2014 |
|
RU2543917C1 |
ОПОРА ВАЛА РОТОРА ТУРБОРЕАКТИВНОГО ДВИГАТЕЛЯ (ВАРИАНТЫ), БРАСЛЕТНОЕ УПЛОТНЕНИЕ ОПОРЫ ВАЛА РОТОРА ТУРБОРЕАКТИВНОГО ДВИГАТЕЛЯ, УЗЕЛ УПЛОТНИТЕЛЬНОГО БРАСЛЕТА ОПОРЫ ВАЛА РОТОРА ТУРБОРЕАКТИВНОГО ДВИГАТЕЛЯ, СЕКЦИЯ КОЛЬЦА БРАСЛЕТНОГО УПЛОТНЕНИЯ ОПОРЫ ВАЛА РОТОРА ТУРБОРЕАКТИВНОГО ДВИГАТЕЛЯ | 2015 |
|
RU2603389C1 |
Уплотнение турбомашины | 1991 |
|
SU1815428A1 |
ТРЕХСЕКЦИОННЫЙ РОТОРНО-ПОРШНЕВОЙ ДВИГАТЕЛЬ | 1994 |
|
RU2084661C1 |
ЦЕНТРОБЕЖНЫЙ КОМПРЕССОР | 2013 |
|
RU2605546C9 |
Изобретение относится к стояночным уплотнениям центробежных компрессоров. Стояночное уплотнение центробежного компрессора содержит уплотнительную пару, включающую деталь роторной части компрессора с уплотняемой поверхностью и уплотнительный узел, установленный на статорной части компрессора и подпружиненный в осевом направлении. Уплотнительный узел выполнен в виде кольцевого поршня, установленного в кольцевом пазу статорной части, который сообщен с каналом подвода сжатого газа. На торцевой поверхности кольцевого поршня установлен торцевой уплотнительный элемент с возможностью контакта с уплотняемой поверхностью детали роторной части, а на цилиндрических поверхностях кольцевого поршня установлены поршневые уплотнительные элементы. Кольцевой поршень подпружинен в направлении от уплотняемой поверхности детали роторной части. Техническим результатом изобретения является повышение герметичности проточной части компрессора при его стоянке и надежности уплотнения. 2 з.п. ф-лы, 1 ил.
1. Стояночное уплотнение центробежного компрессора, содержащее уплотнительную пару, включающую деталь роторной части компрессора с уплотняемой поверхностью и уплотнительный узел, установленный на статорной части компрессора и подпружиненный в осевом направлении, при этом уплотнительный узел выполнен в виде кольцевого поршня, установленного в кольцевом пазу статорной части, который сообщен с каналом подвода сжатого газа, причем на торцевой поверхности кольцевого поршня установлен торцевой уплотнительный элемент с возможностью контакта с уплотняемой поверхностью детали роторной части, а на цилиндрических поверхностях кольцевого поршня установлены поршневые уплотнительные элементы, при этом кольцевой поршень подпружинен в направлении от уплотняемой поверхности детали роторной части.
2. Уплотнение по п.1, отличающееся тем, что расположенный в кольцевом пазу статорной части торец кольцевого поршня имеет кольцевую канавку для подвода сжатого газа.
3. Уплотнение по п.1, отличающееся тем, что кольцевой поршень имеет в осевом сечении ступенчатую форму, причем первая ступень расположена в кольцевом пазу статорной части компрессора, на второй ступени расположен торцевой уплотнительный элемент, а кольцевой поршень подпружинен посредством упругого элемента, расположенного между упором статорной части компрессора и поверхностью первой ступени кольцевого поршня.
СТОЯНОЧНОЕ УПЛОТНЕНИЕ | 1991 |
|
RU2028524C1 |
Стояночное уплотнение вала | 2001 |
|
RU2222741C2 |
Стояночное торцовое уплотнение | 1987 |
|
SU1574960A1 |
Стояночное уплотнение | 1986 |
|
SU1366750A1 |
DE 4119768 A, 17.12.1992 | |||
DE 3223703 A1, 05.01.1984. |
Авторы
Даты
2013-05-20—Публикация
2012-03-28—Подача