СПОСОБ ВНЕПЕЧНОГО МОДИФИЦИРОВАНИЯ АЛЮМИНИЕВЫХ СПЛАВОВ Российский патент 2013 года по МПК C22C1/03 C22C21/04 

Описание патента на изобретение RU2486269C2

Предлагаемое изобретение относится к области металлургии легких сплавов и может быть использовано для получения слитков и отливок из алюминиевых сплавов для изготовления изделий атомной, авиакосмической и автомобильной техники. Использование данного изобретения относится к технологии внепечного модифицирования.

Известен способ получения слитков алюминиевых сплавов, выбранный в качестве аналога, включающий введение в расплав модифицирующих прутков в прилеточную коробку. (Бондарев Б.И., Напалков В.И., Тарарышкин В.И. Модифицирование алюминиевых деформируемых сплавов. - М.; Металлургия, 1979, с 224с).

Недостатком этого способа является наличие в структуре прутка большого количества агломератов интерметаллических соединений, плохо растворимых в потоке расплава и впоследствии осаждаемых на рафинирующих устройствах, что приводит к существенному снижению эффективности модифицирования.

Известен также способ, который можно рассматривать как прототип, получения слитков из алюминиевых сплавов, включающий кавитационную обработку жидкого металла непосредственно в кристаллизаторе или перед ним. (Эскин Г.И. Ультразвуковая обработка расплавленного алюминия. - М.; Металлургия, 1988, с 232).

Недостатком этого способа является то, что технологически способ не позволяет осуществление многокристаллизаторного литья, т.к. требует увеличение числа источников ультразвука для кавитационной обработки каждого слитка.

Техническим результатом предлагаемого способа является измельчение зерна вплоть до недендритного, что приводит к повышению технологичности слитков, повышению механических свойств деформированных полуфабрикатов и более эффективному использованию модифицирующего прутка.

Предлагаемый способ внепечного модифицирования алюминиевых сплавов предполагает подачу расплавленного металла по литейному желобу из миксера в кристаллизатор через литейную коробку, содержащую источник ультразвука. После заполнения коробки расплавом источник ультразвука опускается в расплав таким образом, чтобы глубина расплава в коробке под источником ультразвука, погруженного в расплав, составляла ≤ λ/20, где λ - длина волны на частоте источника ультразвука. Затем в расплав под источник ультразвука вводится модифицирующий пруток, содержащий переходные металлы (ПМ) или их соединения.

Для повышения эффективности внепечного модифицирования расплава, а также для обеспечения возможности многокристаллизаторного литья в желоб после литейной коробки могут устанавливать дополнительно один или более источников ультразвука.

Для более эффективного растворения модифицирующего прутка в литейную коробку помещают, по меньшей мере, два источника ультразвука, наклоненных навстречу друг другу, а модифицирующий пруток вводят в эпицентр, образующийся в кавитационной области.

Предлагаемый способ получения слитков из алюминиевых сплавов отличается от прототипа тем, что за счет кавитационной обработки при введении в расплав модифицирующего прутка перед устройствами рафинирования и фильтрования расплава происходит интенсивное разрушение агломератов активных инокуляторов, находящихся в структуре прутка. Такая комплексная обработка расплава позволяет увеличить количество зародышей кристаллизации и повысить эффективность модифицирования. Повышение эффективности модифицирования приводит к существенному измельчению зеренной структуры слитков, вплоть до формирования предельно измельченной недендритной структуры.

Таким образом, при том же количестве вводимого в расплав модифицирующего прутка, в значительно большей степени, чем в случае аналога, повышается технологическая пластичность слитков и уровень механических свойств деформируемых полуфабрикатов из алюминиевых сплавов.

Пример №1. Литье с вертикально установленным источником (или источниками) ультразвука в литейной коробке.

При литье алюминиевых сплавов (фиг.1) расплавленный металл после миксера (1) попадает в литейную коробку с установленными в ней источником (или источниками) ультразвука (2). После заполнения коробки расплавом в расплав опускают источник (источники) ультразвука и на глубине расплава ≤ λ/20 (≤ 17 мм), где λ - длина волны ультразвука на частоте источника ультразвука (18÷22·103 Гц), под излучатель вводят лигатурный пруток.

λ=c/f,

где с - скорость звука 6000 м/с для алюминия;

f - частота, Гц.

Пруток подают с заданной скоростью, определенной из расчета введения необходимого количества активных инокуляторов ПМ или их соединений. Далее расплав, проходя перед этим через устройства дегазации и фильтрования расплава (3), попадает в кристаллизатор (4).

Сравнительные результаты изменения зеренной структуры в зависимости от концентрации вводимого лигатурным прутком переходного металла в алюминиевый сплав типа 1960, не содержащим в шихтовом составе ПМ, и от количества источников ультразвука представлены в таблице 1.

Влияние комплексной обработки потока расплава на размер зерна и тип структуры слитка сплава 1960, содержащего в шихтовом составе ПМ, представлены в таблице 2.

Наряду с этим отметим, что предложенная схема комплексного внепечного модифицирования (фиг.1) также позволяет при литье алюминиевых сплавов (фиг.2) в блок кристаллизаторов (5) (многокристаллизаторное литье) проводить эффективное модифицирование за счет введения лигатурного прутка перед устройством дегазации и фильтрования расплава (3) в литейную коробку (2) с установленными в ней источником (или источниками) ультразвука.

Пример №2. Литье с двумя наклоненными друг к другу источниками ультразвука в литейной коробке сплавов.

При литье алюминиевых сплавов по предложенной схеме (фиг.1) с внепечным модифицированием потока расплава для повышения эффективности модифицирования в литейной коробке использовали два источника ультразвука, наклоненных навстречу друг другу, а модифицирующий пруток вводили в эпицентр, образующийся в кавитационной области.

Влияние комплексной обработки потока расплава на измельчение размера зерна сплава типа 1960, содержащим в шихтовом составе ПМ, с одним источником ультразвука, установленным вертикально, и двумя наклоненными, представлены в таблице 3. Установлено повышение эффективности модифицирования ~ в 2 раза.

Таким образом, предлагаемый способ внепечного модифицирования алюминиевых сплавов позволяет получить больший эффект модифицирования структуры по сравнению с ранее известными, а также при более экономном расходе лигатурного прутка. Например, для сплавов системы Al-Mg-Sc-Zr, как правило, для получения в слитках недендритной структуры требуется повышенное содержание ПМ, такого как скандий (≈0,3% вес.) Предлагаемый способ внепечного модифицирования алюминиевых сплавов позволяет получить недендритную структуру при пониженном содержании скандия за счет повышения эффективности использования скандиевой лигатуры. При этом достигается максимальное измельчение зеренной структуры слитков, вплоть до формирования предельно измельченной недендритной структуры при экономном расходовании дорогостоящего скандия.

Таблица 1. Сравнительные результаты изменения зеренной структуры в зависимости от концентрации вводимого лигатурным прутком переходного металла в алюминиевый сплав типа 1960, не содержащим в шихтовом составе ПМ, и от количества источников ультразвука Концентрация ПМ, вводимая прутком, % Размер зерна, мкм Без УЗО 1 источник УЗО 2 источника УЗО - ≥ 800** 420** 360** 0,013 - - 110** 0,03 - 100** - 0,08 - 60** 42* 0,09 120** 50* 40* 0,11 115** 45* - 0,12 122** 40* - 0,19 100** - - * - недендритная структура; ** - дендритная структура Таблица 2. Влияние комплексной обработки потока расплава на размер зерна и тип структуры слитка сплава 1960, содержащего в шихтовом составе ПМ. Концентрация ПМ в базовом сплаве, % УЗО потока расплава Дополнительное введение ПМ, % Размер зерна, мкм Zr Ti 0,15 0.03 - - 500** 0,15 0.03 + 0,01 35-40* * - недендритная структура; ** - дендритная структура

Таблица 3. Влияние комплексной обработки потока расплава в зависимости от расположения источников ультразвука на эффективность измельчения структуры сплава типа 1960 (дополнительно введено 0,03% ПМ). Количество источников кавитации Концентрация ПМ в базовом сплаве, % Положение источников Размер зерна, мкм Эффективность модифицирования Zr Ti 1 0,05 0,01 вертикальное 80-100** - 2 0,05 0,01 наклоненное 40-45* ~ в 2 раза * - недендритная структура; ** - дендритная структура

Похожие патенты RU2486269C2

название год авторы номер документа
Установка для модифицирования алюминиевого расплава 2019
  • Беляев Сергей Владимирович
  • Фролов Виктор Федорович
  • Костин Игорь Владимирович
  • Крохин Александр Юрьевич
  • Сидоров Александр Юрьевич
  • Деев Владислав Борисович
  • Баранов Владимир Николаевич
  • Губанов Иван Юрьевич
  • Сальников Александр Владимирович
  • Лесив Елена Михайловна
  • Власов Александр Анатольевич
  • Кречетов Андрей Борисович
  • Партыко Евгений Геннадьевич
  • Губанова Марина Игоревна
RU2725820C1
СПОСОБ ПОЛУЧЕНИЯ СЛИТКОВ ИЗ АЛЮМИНИЕВЫХ СПЛАВОВ С НЕДЕНДРИТНОЙ СТРУКТУРОЙ 2012
  • Савинов Виталий Иванович
  • Милашенко Валентина Александровна
RU2497966C1
МОДИФИЦИРУЮЩИЙ ЛИГАТУРНЫЙ ПРУТОК Ai-Sc-Zr 2012
  • Савинов Виталий Иванович
  • Милашенко Валентина Александровна
RU2497971C1
СПОСОБ ЛИТЬЯ ИЗДЕЛИЙ ИЗ АЛЮМИНИЕВЫХ СПЛАВОВ 2016
  • Сидоров Александр Юрьевич
  • Фролов Виктор Федорович
  • Костин Игорь Владимирович
  • Данилов Андрей Викторович
  • Крохин Александр Юрьевич
  • Беляев Сергей Владимирович
  • Безруких Александр Иннокентьевич
RU2639105C1
СПОСОБ ПОЛУЧЕНИЯ ЛИГАТУРНОГО МАТЕРИАЛА ДЛЯ КОМПЛЕКСНОГО МОДИФИЦИРОВАНИЯ СТРУКТУРЫ СЛИТКОВ ИЗ ЛЕГКИХ СПЛАВОВ 2011
  • Эскин Георгий Иосифович
  • Бочвар Сергей Георгиевич
  • Конкевич Валентин Юрьевич
  • Лебедева Татьяна Ивановна
  • Ялфимов Владимир Игнатьевич
RU2455380C1
СПОСОБ МОДИФИЦИРОВАНИЯ АЛЮМИНИЕВЫХ СПЛАВОВ 2001
RU2210611C2
Способ модифицирования алюминия и его сплавов 2017
  • Куликов Борис Петрович
  • Баранов Владимир Николаевич
  • Поляков Петр Васильевич
  • Железняк Виктор Евгеньевич
  • Фролов Виктор Федорович
  • Мотков Михаил Михайлович
RU2674553C1
СПОСОБ ПОЛУЧЕНИЯ МОДИФИЦИРУЮЩИХ МАТЕРИАЛОВ ДЛЯ АЛЮМИНИЯ И ЕГО СПЛАВОВ 2004
  • Климко А.П.
  • Загиров Н.Н.
  • Биронт В.С.
  • Сидельников С.Б.
  • Лопатина Е.С.
RU2257419C1
СПОСОБ ИЗГОТОВЛЕНИЯ ПОРШНЕВОЙ ЗАГОТОВКИ ИЗ ЗАЭВТЕКТИЧЕСКОГО СИЛУМИНА 2015
  • Конкевич Валентин Юрьевич
  • Лебедева Татьяна Ивановна
  • Шадаев Денис Александрович
  • Предко Павел Юрьевич
  • Бочвар Сергей Георгиевич
  • Тарануха Галина Владимировна
  • Кунявская Татьяна Михайловна
  • Кузнецов Андрей Олегович
  • Нилов Евгений Евгеньевич
RU2613498C2
СПОСОБ ПРОИЗВОДСТВА ТРУБ ИЗ СВЕРХПРОЧНЫХ АЛЮМИНИЕВЫХ СПЛАВОВ НА ОСНОВЕ СИСТЕМЫ Al-Zn-Mg-Cu 2012
  • Савинов Виталий Иванович
  • Милашенко Валентина Александровна
RU2480300C1

Иллюстрации к изобретению RU 2 486 269 C2

Реферат патента 2013 года СПОСОБ ВНЕПЕЧНОГО МОДИФИЦИРОВАНИЯ АЛЮМИНИЕВЫХ СПЛАВОВ

Изобретение относится к области металлургии легких сплавов и может быть использовано для получения слитков из алюминиевых сплавов повышенного качества при изготовлении изделий атомной, авиакосмической и автомобильной промышленности. Способ включает подачу расплавленного металла из миксера в кристаллизатор через литейную коробку, содержащую, по меньшей мере, один источник ультразвука, и литейный желоб, причем после заполнения литейной коробки расплавом опускают в расплав источник или источники ультразвука таким образом, чтобы глубина расплава в ней под источником ультразвука, погруженного в расплав, составляла ≤ λ/20, где λ - длина волны на частоте источника ультразвука, и вводят в расплав под источник ультразвука модифицирующий пруток, содержащий переходные металлы или их соединения. Техническим результатом является измельчение зерна, что приводит к повышению технологичности слитков, механических свойств деформированных полуфабрикатов и более эффективному использованию модифицирующего прутка. 2 з.п. ф-лы, 2 пр., 3 табл., 2 ил.

Формула изобретения RU 2 486 269 C2

1. Способ внепечного модифицирования алюминиевых сплавов, включающий подачу расплавленного металла из миксера в кристаллизатор через литейную коробку, содержащую, по меньшей мере, один источник ультразвука, и литейный желоб, причем после заполнения литейной коробки расплавом опускают в расплав источник или источники ультразвука таким образом, чтобы глубина расплава в ней под источником ультразвука, погруженного в расплав, составляла ≤λ/20, где λ - длина волны на частоте источника ультразвука, и вводят в расплав под источник ультразвука модифицирующий пруток, содержащий переходные металлы или их соединения.

2. Способ по п.1, отличающийся тем, что литейная коробка содержит, по меньшей мере, два источника ультразвука, наклоненных навстречу друг другу, а модифицирующий пруток вводят в эпицентр образующейся кавитационной области.

3. Способ по п.1, отличающийся тем, что для повышения эффективности внепечного модифицирования расплава после литейной коробки в желоб дополнительно устанавливают один или более источников ультразвука.

Документы, цитированные в отчете о поиске Патент 2013 года RU2486269C2

CN 101805851 А, 18.08.2010
Устройство для сортировки чисел 1984
  • Вавчук Евгений Ярославович
  • Заячкивская Людмила Богдановна
  • Лабяк Роман Степанович
  • Равский Виталий Михайлович
SU1201833A1
ПРОВОЛОКА ДЛЯ ВНЕПЕЧНОЙ ОБРАБОТКИ МЕТАЛЛУРГИЧЕСКИХ РАСПЛАВОВ 2006
  • Дюдкин Дмитрий Александрович
  • Бать Сергей Юрьевич
  • Кисиленко Владимир Васильевич
RU2318026C2
УСТРОЙСТВО ДЛЯ НАНЕСЕНИЯ ПОРОШКОВЫХ МАТЕРИАЛОВ НА ИЗДЕЛИЯ 1994
  • Поворин А.Д.
  • Полухин О.Ф.
  • Мосолов Е.М.
RU2111065C1
Устройство для управления с движущейся повозки стационарными серводвигателями 1932
  • Маляревский Б.И.
  • Михайлов Г.М.
SU38219A1
СПОСОБ ОБРАБОТКИ РАСПЛАВА МЕТАЛЛА В КОВШЕ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2002
  • Чепель Сергей Николаевич
  • Звездин Александр Афанасьевич
  • Найденко Владимир Викторович
  • Найдек Владимир Леонтьевич
RU2247156C2

RU 2 486 269 C2

Авторы

Бочвар Сергей Георгиевич

Эскин Георгий Иосифович

Ялфимов Владимир Игнатьевич

Даты

2013-06-27Публикация

2011-09-05Подача