МОДИФИЦИРУЮЩИЙ ЛИГАТУРНЫЙ ПРУТОК Ai-Sc-Zr Российский патент 2013 года по МПК C22C35/00 B22D21/04 B22D27/20 

Описание патента на изобретение RU2497971C1

Предлагаемое изобретение относится к области металлургии, и в частности, к химическому составу и технологии получения лигатурных прутков для модифицирования зеренной структуры слитков из алюминиевых сплавов. Модифицирование зеренной структуры слитков уменьшает их склонность к горячим и холодным трещинам, возникающим во время и после литья, повышает технологическую пластичность слитков при обработке их давлением (ковке, прессовании, прокатке) и улучшает служебные свойства деформированных полуфабрикатов, получаемых из вышеупомянутых слитков.

Одной из самых известных и давно используемых модифицирующих лигатур являются лигатура Al-Ti с содержанием титана 2-5% (здесь и далее % по массе) и лигатура Al-В с содержанием бора 2-5% (Напалков В.И., Махов С.В. Легирование и модифицирование алюминия и магния. М.: МИСиС, 2002 г. - с.230-245). Использование лигатур Al-Ti и Al-В позволяет измельчать зеренную структуру слитков из алюминиевых сплавов и за счет этого повышать их сопротивление горячим и холодным трещинам и увеличивать технологическую пластичность при обработке давлением. Однако эффективность лигатур Al-Ti и Al-В не высока, и сильного измельчения зерна в отливаемых слитках не происходит.

Известны более эффективные модифицирующие лигатуры Al-Ti-B и Al-Ti-C, выпускаемые в виде лигатурных прутков (Макаров Г.С.Слитки из алюминиевых сплавов с магнием и кремнием для прессования. М.: Интернет.Инжиниринг, 2011 г. - стр.309-314; Напалков В.И., Махов С.В. Легирование и модифицирование алюминия и магния. М.: МИСиС, 2002 г. - с.245-251). Прототип.

Лигатуры Al-Ti-B и Al-Ti-C, используемые в виде лигатурных прутков, оказывают сильное модифицирующее действие на зеренную структуру слитков из алюминиевых сплавов, заметно превосходя модифицирующее действие лигатур Al-Ti и Al-В. Вместе с тем использование лигатурных прутков Al-Ti-B и Al-Ti-C не дает возможность получить слитки из алюминиевых сплавов с предельно измельченной зеренной структурой, с так называемой недендритной структурой, характеризуемой отсутствием дендритного строения и равенством величины зерна величине дендритной ячейки второго порядка (дендритному параметру).

Предлагается модифицирующий лигатурный пруток Al-Sc-Zr, обеспечивающий получение слитков из алюминиевых сплавов с предельно измельченной зеренной структурой (с недендритной структурой). При использовании лигатурного прутка Al-Sc-Zr в процессе литья слитков формируется предельно измельченная зеренная структура, не имеющая дендритного строения, с величиной зерна, равной дендритному параметру. Помимо предельного измельчения зеренной структуры измельчаются частицы избыточных фаз кристаллизационного происхождения, залегающие по границам зерен.

Для получения лигатурного прутка Al-Sc-Zr, способного предельно измельчить зеренную структуру слитков вплоть до образования недендритной структуры, необходимо соблюдение следующих условий.

1. Химический состав лигатурного прутка должен удовлетворять требованиям, % по массе.

Скандий - 0,8-1,5 Цирконий - 0,8-1,5

По крайней мере один из элементов

Марганец до 0,10 Хром до 0,10 Титан до 0,10 Молибден до 0,10 Железо до 0,30 Кремний до 0,20 Алюминий - остальное

2. При производстве модифицирующего лигатурного прутка Al-Sc-Zr в процессе кристаллизации заготовки, из которой будет изготавливаться лигатурный пруток, скорость охлаждения в интервале температур кристаллизации должна быть больше 50 град/сек, а расплав перед литьем должен перегреваться до температур выше 850°С.

3. На конечных операциях при производстве лигатурного прутка из быстрозакристаллизованной заготовки используют холодную деформацию.

Предлагаемый модифицирующий лигатурный пруток Al-Sc-Zr является пока единственным, который способен предельно измельчить зеренную структуру слитков вплоть до формирования недендритной структуры. Введение лигатурного прутка в алюминиевый расплав следует осуществлять с такой скоростью, чтобы содержание скандия и циркония в слитке отливаемого сплава возрастало не более чем на 0,02% каждого компонента. Этого количества скандия и циркония достаточно, чтобы предельно измельчить зеренную структуру слитка, то есть сформировать недендритную структуру. Получение слитков непрерывного литья с недендритной структурой и с измельченными частицами избыточных фаз кристаллизационного происхождения обеспечивает следующие выгоды и преимущества.

1. Резко уменьшается склонность к горячим трещинам в процессе литья слитков из алюминиевых сплавов.

2. Уменьшается склонность слитков к холодным трещинам после окончания литья.

3. Возрастает технологическая пластичность слитков при их обработке давлением - ковке, прокатке и прессовании.

4. Повышается комплекс служебных свойств готовых полуфабрикатов (профилей, поковок, листов, штамповок, плит), полученных из слитков с недендритной структурой.

Природа сильнейшего модифицирующего действия лигатурных прутков Al-Sc-Zr заключается в том, что в алюминиевый расплав с помощью лигатурного прутка вносятся дисперсные частицы интерметаллидов Al3(Sc, Zr), кристаллическая решетка которых имеет практически полное размерно-структурное соответствие кристаллической решетке алюминия. Поэтому частицы Al3(Sc, Zr) обладают сильнейшим затравочным действием при кристаллизации зерен алюминиевого раствора, т.е. частицы Al3(Sc, Zr) являются активными центрами кристаллизации зерен твердого алюминиевого раствора. Кроме того, частицы-зародыши Al3(Sc, Zr) обладают хорошей смачиваемостью алюминиевым расплавом, что усиливает их затравочное действие. Получение лигатурного прутка с использованием высокой скорости охлаждения при кристаллизации вызывает диспергирование частиц Al3(Sc, Zr) и обусловливает появление большого числа потенциальных центров кристаллизации алюминиевых зерен при литье слитков. Как показывают эксперименты, введение в расплав по 0,001-0,01% Sc и Zr с помощью лигатурного прутка Al-Sc-Zr обеспечивает предельное измельчение зеренной структуры слитка, т.е. формирование недендритной структуры.

Пример.

Методом непрерывного литья был получен слиток диаметром 304 мм из сплава 1960 следующего фактического химического состава (табл.1).

Таблица 1 Фактический химический состав слитка сплава 1960, % по массе Al Zn Mg Cu Zr Ti Mn Fe Si Остальное 8,61 2,63 2,36 0,13 0,01 0,02 0,13 0,07

Плавку готовили в электрической печи сопротивления емкостью 1 т. Половину плавки отливали с использованием серийного лигатурного прутка Al-Ti5-B1, а вторую половину - с использованием предлагаемого лигатурного прутка Al-Sc-Zr, с содержанием 1,2% Sc и 1,15% Zr. Лигатурный пруток был получен из слитка непрерывного литья диаметром 20 мм, отлитого в электромагнитный кристаллизатор со скоростью охлаждения в интервале температур кристаллизации около 200 град/сек. Температура перегрева расплава перед литьем составляла около 1100°С. Расплав защищали от окисления с помощью инертного газа. Слиток отжигали, и с помощью ротационной ковки и последующего холодного волочения получали лигатурный пруток с хорошей чистой поверхностью диаметром 9,7 мм.

Слитки диаметром 305 мм, отлитые с применением предлагаемого лигатурного прутка Al-Sc-Zr, имели ровную малошероховатую поверхность практически без неслитин и ликвационных наплывов. Зеренная структура слитков - недендритная, с величиной зерна около 70 мкм.

Слитки, отлитые с использованием известного лигатурного прутка Al-Ti5-B1, имели шероховатую поверхность с небольшими ликвационными наплывами. Структура слитка - зеренно-дендритная, с величиной зерна около 350 мкм и величиной дендритной ячейки около 70 мкм. Слиток с недендритной структурой имел большую плотность из-за меньшей пористости и значительно меньшего размера (~ в 10 раз) включения избыточных фаз, залегающих в виде прослоек по границам зерен.

Слитки сразу после литья гомогенизировали при температуре 460°С, 24 ч, с последующим охлаждением на воздухе.

Для оценки технологической пластичности слитков проводили испытания на растяжение образцов, взятых из гомогенизированных слитков, при температуре 400°С. Результаты испытаний представлены в таблице 2.

Таблицы 2 Механические свойства слитков при 400°С Слиток модифицированный с использованием σB, МПа δ, % известного лигатурного прутка 3,7 86 предлагаемого лигатурного прутка 3,4 99

Рассмотрение таблицы 2 показывает, что слиток, модифицированный с помощью предлагаемого прутка и имеющий недендритную структуру, обладает более высокой пластичностью и меньшим сопротивлением деформации по сравнению со слитком, модифицированным известным лигатурным прутком и имеющим обычную зеренную дендритную структуру.

Из слитков путем механической обработки были сделаны заготовки под прессование труб, и затем на прессе усилием 3,5 тысячи тонн были отпрессованы трубы ⌀146×6 мм. Температура нагрева перед прессованием была около 380°С. В процессе прессования температура повышалась на 70-90°С за счет выделения деформационного тепла.

Скорость истечения при прессовании слитков с недендритной структурой составила около 2,0 м/мин, а при использовании слитков с обычной зеренно-дендритной структурой - 0,8 м/мин.

Прессованные трубы были закалены в воде с температуры 470°С, выправлены, искусственно состарены по режиму 140°С, 16 часов и подвергнуты испытаниям. В таблице 3 представлены результаты испытаний термически обработанных труб на растяжение.

Таблица 3 Механические свойства закаленных и искусственно состаренных труб, полученных из слитков, модифицированных обычным лигатурным прутком и предлагаемым лигатурным прутком Использованный лигатурный пруток при литье слитков σB, МПа σ02, МПа δ, % Известный 645 621 4,7 Предлагаемый 673 644 7,7

Рассмотрение таблицы 3 свидетельствует, что трубы, полученные из слитка, модифицированного предлагаемым лигатурным прутком, имеют более высокие прочностные характеристики и более высокое относительное удлинение.

С целью оценки технологической пластичности труб при последующей холодной прокатке горячепрессованные трубы были отожжены по стандартному режиму 400°С, 1 час с последующим охлаждением вместе с печью до 150°С, затем на воздухе, и испытаны на растяжение (табл.4).

Таблица 4 Механические свойства отожженных труб, полученных из слитков, модифицированных известным лигатурным прутком и предлагаемым лигатурным прутком Использованный лигатурный пруток при литье слитков σB, МПа σ02, МПа δ, % Известный 251 163 19,7 Предлагаемый 244 155 23,5

Анализ таблицы 4 показывает, что пластичность отожженных труб, полученных из слитков, отлитых с использованием предлагаемого лигатурного прутка, выше, а сопротивление деформации немного ниже.

Отожженные трубы были прокатаны вхолодную с ⌀146×6 мм на ⌀134×3 мм. Процесс прокатки подтвердил более высокую технологическую пластичность отожженных труб, получаемых из слитков, модифицированных предлагаемым лигатурным прутком. Холоднокатаные трубы вместе с заготовками под поперечные образцы были закалены в воде с температуры 470°С и искусственно состарены по режиму 140°С, 16 часов. Механические свойства труб после закалки и искусственного старения представлены в таблице 5.

Таблица 5 Механические свойства труб после закалки и искусственного старения Использованный лигатурный пруток при литье слитков Продольные Поперечные σB, МПа σ02, МПа δ, % σв, МПа σ02, МПа δ,% Известный 634 601 4,8 627 601 5,1 Предлагаемый 649 624 7,8 644 617 7,5

Из труб были изготовлены образцы для испытаний на ударную вязкость и образцы на малоцикловую усталость (f=3 гц, Kt=2,6; Cmax=160 МПа). Результаты испытаний представлены в таблице 6.

Таблица 6 Результаты испытаний труб холоднокатаных и термически упрочненных на малоцикловую усталость и ударную вязкость Использованный лигатурный пруток при литье слитков KCU, кгм/см2 Число циклов до разрушения, кцикл Известный 0,43 180-215 Предлагаемый 0,68 240-300

Трубы, полученные из слитков, отлитых с использованием предлагаемого лигатурного прутка, имеют большие значения ударной вязкости и обладают большим сопротивлением повторным нагрузкам.

Таким образом, предлагаемый лигатурный пруток Al-Sc-Zr обеспечивает предельное измельчение зеренной структуры слитков и сильное измельчение частиц избыточных фаз, залегающих по границам зерен. Указанные изменения структуры слитков из высокопрочного сплава 1960 обусловливают более высокие скорости истечения при прессовании, более высокую технологичность при холодной прокатке труб и, самое главное, дает возможность повысить механические и ресурсные свойства готовых труб, полученных из этих слитков.

Похожие патенты RU2497971C1

название год авторы номер документа
СПОСОБ ПОЛУЧЕНИЯ СЛИТКОВ ИЗ АЛЮМИНИЕВЫХ СПЛАВОВ С НЕДЕНДРИТНОЙ СТРУКТУРОЙ 2012
  • Савинов Виталий Иванович
  • Милашенко Валентина Александровна
RU2497966C1
СПОСОБ ВНЕПЕЧНОГО МОДИФИЦИРОВАНИЯ АЛЮМИНИЕВЫХ СПЛАВОВ 2011
  • Бочвар Сергей Георгиевич
  • Эскин Георгий Иосифович
  • Ялфимов Владимир Игнатьевич
RU2486269C2
СПОСОБ ПРОИЗВОДСТВА ТРУБ ИЗ СВЕРХПРОЧНЫХ АЛЮМИНИЕВЫХ СПЛАВОВ НА ОСНОВЕ СИСТЕМЫ Al-Zn-Mg-Cu 2012
  • Савинов Виталий Иванович
  • Милашенко Валентина Александровна
RU2480300C1
СПОСОБ ПОЛУЧЕНИЯ ЛИГАТУРНОГО МАТЕРИАЛА ДЛЯ КОМПЛЕКСНОГО МОДИФИЦИРОВАНИЯ СТРУКТУРЫ СЛИТКОВ ИЗ ЛЕГКИХ СПЛАВОВ 2011
  • Эскин Георгий Иосифович
  • Бочвар Сергей Георгиевич
  • Конкевич Валентин Юрьевич
  • Лебедева Татьяна Ивановна
  • Ялфимов Владимир Игнатьевич
RU2455380C1
СПОСОБ ПОЛУЧЕНИЯ МОДИФИЦИРУЮЩИХ МАТЕРИАЛОВ ДЛЯ АЛЮМИНИЯ И ЕГО СПЛАВОВ 2004
  • Климко А.П.
  • Загиров Н.Н.
  • Биронт В.С.
  • Сидельников С.Б.
  • Лопатина Е.С.
RU2257419C1
СПОСОБ МОДИФИЦИРОВАНИЯ АЛЮМИНИЕВЫХ СПЛАВОВ 2001
RU2210611C2
СВЕРХПРОЧНЫЙ СПЛАВ НА ОСНОВЕ АЛЮМИНИЯ 2011
  • Захаров Валерий Владимирович
  • Ростова Татьяна Дмитриевна
  • Фисенко Ирина Антонасовна
  • Кирилова Лидия Петровна
RU2449037C1
ВЫСОКОПРОЧНЫЙ ТЕРМОСТОЙКИЙ МЕЛКОЗЕРНИСТЫЙ СПЛАВ НА ОСНОВЕ СИСТЕМЫ Al-Cu-Mn-Mg-Sc-Nb-Hf И ИЗДЕЛИЕ ИЗ НЕГО 2020
  • Арышенский Евгений Владимирович
  • Арышенский Владимир Юрьевич
  • Яшин Василий Владимирович
  • Дриц Александр Михайлович
  • Гречников Федор Васильевич
RU2747180C1
АЛЮМИНИЕВЫЙ СПЛАВ 2003
  • Нейков Олег Домианович
  • Крайников Александр Васильевич
  • Мильман Юлий Викторович
  • Шмаков Ю.В.
  • Томпсон Георг
  • Елагин В.И.
  • Сирко Александр Иванович
  • Лоцко Дина Васильевна
  • Васильева Галина Ильинична
  • Захарова Наталья Петровна
  • Тохтуев Валерий Глебович
  • Зенина М.В.
  • Самелюк Анатолий Васильевич
RU2251585C2
СПЛАВ НА ОСНОВЕ АЛЮМИНИЯ И ИЗДЕЛИЕ ИЗ НЕГО 2023
  • Манн Виктор Христьянович
  • Рябов Дмитрий Константинович
  • Вахромов Роман Олегович
  • Градобоев Александр Юрьевич
  • Алиев Руслан Теймурович
  • Шинкаренко Евгений Васильевич
  • Кривенкова Евгения Владимировна
RU2813495C1

Реферат патента 2013 года МОДИФИЦИРУЮЩИЙ ЛИГАТУРНЫЙ ПРУТОК Ai-Sc-Zr

Изобретение относится к области металлургии, в частности к химическому составу и технологии получения лигатурных прутков для модифицирования зеренной структуры слитков из алюминиевых сплавов. Лигатурный пруток содержит, мас.%: скандий 0,8-1,5, цирконий 0,8-1,5, по крайней мере один из элементов: марганец до 0,10, хром до 0,10, титан до 0,10, молибден до 0,10, железо до 0,30, кремний до 0,20, алюминий - остальное. Лигатурный пруток Al-Sc-Zr обеспечивает получение слитков из алюминиевых сплавов с предельно измельченной зеренной структурой, что позволяет максимально возможно уменьшить склонность к горячим трещинам в процессе литья слитков из алюминиевых сплавов и к холодным трещинам после окончания литья, при этом возрастает технологическая пластичность слитков при их обработке давлением и повышается комплекс служебных свойств готовых полуфабрикатов, например профилей, поковок, листов, штамповок, плит, полученных из слитков с недендритной структурой. 6 табл., 1 пр.

Формула изобретения RU 2 497 971 C1

Лигатурный пруток для модифицирования слитков из алюминиевых сплавов с недендритной структурой, отличающийся тем, что он имеет следующий химический состав, мас.%:
Скандий 0,8-1,5 Цирконий 0,8-1,5,


По крайней мере один из элементов
Марганец до 0,10 Хром до 0,10 Титан до 0,10 Молибден до 0,10 Железо до 0,30 Кремний до 0,20 Алюминий Остальное

Документы, цитированные в отчете о поиске Патент 2013 года RU2497971C1

ДОБАТКИН В.И
и др
Быстро закристаллизованные алюминиевые сплавы
- М.: ВИЛС, 1995, с.302-304
СПОСОБ ПОЛУЧЕНИЯ АЛЮМОСКАНДИЙСОДЕРЖАЩЕЙ ЛИГАТУРЫ И ШИХТА ДЛЯ ПОЛУЧЕНИЯ АЛЮМОСКАНДИЙСОДЕРЖАЩЕЙ ЛИГАТУРЫ 2009
  • Яценко Сергей Павлович
  • Яценко Александр Сергеевич
  • Овсянников Борис Владимирович
  • Варченя Павел Анатольевич
RU2421537C2
ЭЛЕКТРИЧЕСКИЙ ДВУХСЛОЙНЫЙ КОНДЕНСАТОР БИПОЛЯРНОГО СЛОИСТОГО ТИПА 2008
  • Хорикоши Рон
RU2424595C1
СОЛНЕЧНЫЙ ВОДОНАГРЕВАТЕЛЬ 2014
  • Иванова Ирина Владимировна
  • Харитонов Евгений Александрович
  • Анаников Сергей Ваганович
RU2555611C1

RU 2 497 971 C1

Авторы

Савинов Виталий Иванович

Милашенко Валентина Александровна

Даты

2013-11-10Публикация

2012-05-18Подача