Изобретение относится к нефтехимии, а именно к полимерным химическим реагентам, снижающим гидродинамическое сопротивление (ГДС), возникающее при транспорте углеводородных жидкостей по трубопроводам. Применение таких реагентов позволяет увеличить производительность действующих трубопроводов, уменьшить количество перекачивающих станций (НПС) и давление, развиваемое НПС, а также потребляемую электроэнергию. Введение их в поток в концентрациях порядка 2-30 г на одну тонну нефти позволяет увеличить пропускную способность нефтепроводов в зависимости от диаметра на 15-47%.
Особенностью полимеризации α-олефинов с использованием катализаторов Циглера-Натта является то, что самая высокомолекулярная фракция полимера формируется на ранних стадиях конверсии, и в способах [Pat. US №4415714, Pat. US №4433123] процесс обрывают на 20%-ной стадии конверсии, что приводит к большому расходу мономера и катализатора.
Известен способ полимеризации высших α-олефинов на алюмотермическом катализаторе TiCl3 1/3 AlCl3 в присутствии алюминийорганического сокатализатора Al(СН2СН3)2Cl в течение 31 часа [Pat. US №3692676]. Выход целевого продукта 88%, снижение гидродинамического сопротивления нефти 12,0% при концентрации агента 5 ppm. Недостатками способа являются незначительное увеличение производительности трубопроводов и длительное время полимеризации.
Известен способ получения противотурбулентной присадки [Pat. US №4647633] полимеризацией α-олефинов в среде углеводородного растворителя на катализаторе TiCl3 1/3 AlCl3, но в качестве алюмоорганического сокатализатора выступает смесь Al(СН2СН3)2Cl и Al(СН2СН3)3. Время полимеризации 8 часов, выход целевого продукта 64%, DR 18,2% при концентрации агента 2 ppm. Недостатками способа являются низкие значения снижения ГДС и выхода продукта.
Наиболее близким по технологии синтеза и достигаемому результату является способ полимеризации 0,12-0,80 моль α-олефинов в среде углеводородного растворителя в присутствии в качестве катализатора 0,002-0,02 моль TiCl3, полученного восстановлением TiCl4 алюмоорганическим соединением, и 0,0017-0,0170 моль алюмоорганического сокатализатора в интервале температур от -30°C до +20°C в течение 5 часов [Патент РФ №2075485, 1997 г.]. DR=30-48% (н-гептан). Недостатками способа являются недостаточно высокая молекулярная масса и широкое молекулярно-массовое распределение, а также сильное разбавление активной основы, что приводит к увеличению себестоимости противотурбулентной присадки.
Задачей заявляемого изобретения является получение нефтерастворимых полимеров с исключительно высокой молекулярной массой и узким молекулярно-массовым распределением, снижающих ГДС керосина.
Технический результат при использовании изобретения - увеличение выхода целевого продукта и его молекулярной массы, снижение молекулярно-массового распределения.
Указанный технический результат достигается тем, что в способе получения полимерных основ для противотурбулентных присадок, включающем полимеризацию высших альфа-олефинов в присутствии в качестве катализатора продукта восстановления тетрахлорида титана алюминийорганическим соединением, и алюминийорганического сокатализатора в интервале температур от -20°C до +20°C, согласно изобретению. в качестве высших альфа-олефинов используют олефины с числом атомов углерода от 6 до 30, а в качестве алюминийорганического сокатализатора используют комплекс на основе 3-тиа-1,5-диазабицикло[3.2.1]октана и диметилалюминийхлорида при следующем молярном соотношении реагентов:
причем реакцию проводят в течение 8-12 часов.
Полимеризацию проводят в отсутствии растворителя, что приводит к получению концентрированной активной основы и уменьшению экономических потерь, связанных с отсутствием процессов выделения полимера (осушки, осаждением растворителем и т.д.).
Заявляемая каталитическая система отличается высокой активностью по отношению к α-олефинам (C6-C30), приводит к образованию полимеров с исключительно высокой молекулярной массой M=15-21·106 Да и узким молекулярно-массовым распределением.
Перечисленные отличительные признаки указывают на специфическую особенность указанной системы мономер-катализатор-сокатализатор, которая позволяет получать нефтерастворимые полимеры с исключительно высокой молекулярной массой и узким молекулярно-массовым распределением.
Благодаря заявляемому способу обеспечивается получение сверхвысокомолекулярных полимеров в течение 8-12 часов в интервале температур от -20°C до +20°С с выходом 90-98%, снижающих ГДС керосина на 35-47% при концентрации полимера 2 ppm.
Предлагаемый способ осуществляется следующим образом. В реактор из нержавеющей стали марки 12Х18Н10Т, снабженный перемешивающим устройством, линиями загрузки компонентов и барботажа инертного газа, линией разгрузки продукта, карманом для термопары загружают расчетное количество мономеров. Отдельно в инертной среде готовят каталитическую систему, состоящую из катализатора TiCl3, полученного восстановлением TiCl4 алюмоорганическим соединением (например, Al(СН3)2Cl, Al(СН2СН3)2Cl, Al(СН2СН3)3) и сокатализатора - алюминийсодержащего комплекса на основе 3-тиа-1,5-диазабицикло[3.2.1]октана и Al(СН3)2Cl. Далее проводят загрузку катализатора в реактор. Перемешивание проводят в течение 15 минут, после чего производят загрузку реакционной массы в специальные емкости для проведения более полной полимеризации. Емкости оборудованы рубашкой для термостатирования реакционной массы и поддержания постоянной температуры в температурном интервале от +20 до -20°C. По истечении 8-12 часов проводят выгрузку готовой активной основы противотурбулентной присадки.
Получение сокатализатора осуществляют по методикам [Flores-Parra A., and other // Eur. J.Inorg. Chem. - 1999. - P.2069-2073; Galvez-Ruiz С.J., and other // Eur. J.Inorg. Chem. - 2004. - P.601-611; Juan Carlos Galvez-Ruizand // Eur. J.Inorg. Chem. 2003, 42, P.7569-7578]. В металлическую термостатированную емкость загружают 0,01 моль 3-тиа-1,5-диазабицикло[3.2.1]октана и при перемешивании в инертной среде при температуре -40°C добавляют 0,01 моль Al(СН3)2Cl (в гексане или толуоле). Перемешивание реакционной массы проводят в течение 2 часов. Гетероциклическое соединение 3-тиа-1,5-диазабицикло[3.2.1]октан получено [Akhmetova V.R., Vagapov R.A. and other, Tetrahedron, 2007 Vol.63, Is. 47, P.11702-11709] тиометилированием этилендиамина с помощью формальдегида и сероводорода при температуре 0°C.
Экспериментальную проверку наработанных образцов проводили на капиллярном турбулентном реометре с использованием в качестве рабочей жидкости керосина марки ТС-1. С помощью газа (азота) в реометре создается давление (Р=10 атм) и различные скорости течения жидкости через капилляр с радиусом (r=2 мм) и длиной (l=1 м). Концентрация исследуемых образцов составляет 2 ppm. С помощью секундомера фиксируется время истечения керосина и рассчитывается снижение ГДС (DR) по формуле:
где τ0 - время истечения чистого керосина ТС-1, с;
τ - время истечения керосина с исследуемой присадкой, с.
В доступной научно-технической и патентной литературе способ, включающий полимеризацию высших альфа-олефинов С6-С30 в присутствии в качестве катализатора продукта восстановления тетрахлорида титана алюминийорганическим соединением, и в качестве сокатализатора комплекса на основе 3-тиа-1,5-диазабицикло[3.2.1]октана и диметилалюминийхлорида при молярном соотношении реагентов соответственно 1:0,002-0,004:0,02-0,04 в интервале температур (-20) - +(20)°C в течение 8-12 часов. Таким образом, заявляемое изобретение соответствует критерию «новизна».
Исследованиями авторов установлено, что проведение полимеризации высших альфа-олефинов С6-С30 в присутствии в качестве катализатора продукта восстановления тетрахлорида титана алюминийорганическим соединением, и в качестве сокатализатора комплекса на основе 3-тиа-1,5-диазабицикло[3.2.1]октана и диметилалюминийхлорида при молярном соотношении реагентов соответственно 1:0,002-0,004:0,02-0,04 в интервале температур от -20°C до +20°C в течение 8-12 часов, обеспечивает получение нефтерастворимых полимеров с исключительно высокой молекулярной массой и узким молекулярно-массовым распределением, снижающих ГДС керосина. Таким образом, заявляемое изобретение соответствует критерию «изобретательский уровень».
Сущность изобретения поясняется следующими примерами:
Пример 1. В реактор при температуре 25°C загружали α-олефины C-8 (4 моль) и C-27 (1 моль). Включали подачу азота и при перемешивании загружали расчетное количество каталитической системы в реактор.
Каталитическая система готовилась в отдельной емкости. В сухую емкость в токе азота загружали TiCl3 (0,01 моль), полученного восстановлением TiCl4 алюминийорганическим соединением, и сокатализатор (0,1 моль) комплекс на основе 3-тиа-1,5-диазабицикло[3.2.1]октана и Al(СН3)2Cl.
Перемешивание проводили в течение 15 минут, после чего производили загрузку реакционной массы в специальные емкости для проведения более полной полимеризации. По истечении 8 часов выдержки при температуре 0°C проводили выгрузку готовой активной основы противотурбулентной присадки для проведения ее дальнейшей сушки. Выход целевого продукта 98%, DR 42%, Мр=18,7 млн Да, ([D]=1,06).
Пример 2. В реактор при температуре 25°C загружали α-олефины C-12 (3 моль) и C-30 (2 моль). Включали подачу азота и при перемешивании загружали расчетное количество каталитической системы в реактор.
Каталитическая система готовилась в отдельной емкости. В сухую емкость в токе азота загружали TiCl3 (0,018 моль), полученного восстановлением TiCl4 алюминийорганическим соединением, и сокатализатор (0,18 моль) комплекс на основе 3-тиа-1,5-диазабицикло[3.2.1]октана и Al(СН3)2Cl.
Перемешивание проводили в течение 15 минут, после чего производили загрузку реакционной массы в специальные емкости для проведения более полной полимеризации. По истечении 12 часов выдержки при температуре -20°C проводили выгрузку готовой активной основы противотурбулентной присадки. Выход целевого продукта 98%, DR 47%, Мр=20,3 млн Да, [D]=1,05.
Определение молекулярно-массового распределения образцов проводили на гель-хроматографе Shimadzu LC 20AD Prominence с применением универсальной калибровки, построенной на образцах полистирола. В качестве подвижной фазы использовался тетрагидрофуран (чистый для спектроскопии), в качестве внутреннего стандарта - толуол (х.ч.).
Как видно из примеров 1-2 и примеров, представленных в таблице, заявляемый способ, включающий использование в качестве исходного соединения α-олефинов С6-С30, а в качестве каталитической системы: TiCl3, полученный восстановлением TiCl4 алюмоорганическим соединением (например, Al(СН3)2Cl, Al(СН2СН3)2Cl, Al(СН2СН3)3), и сокатализатор на основе комплекса 3-тиа-1,5-диазабицикло[3.2.1]октана и Al(СН3)2Cl, благодаря использованию уникальной каталитической системы позволяет получить активную основу противотурбулентной присадки с высоким выходом (90-98%), высокой молекулярной массой (15-21 млн Да) и узким молекулярно-массовым распределением ([D] не более 1,06, ГДС (DR)=35-47%. Реакция проходит в отсутствии растворителя, что приводит к увеличению концентрации полимерной основы и уменьшению себестоимости противотурбулентной присадки.
Предлагаемый способ может быть использован в нефтехимической промышленности, воспроизводим и при использовании реализуется его назначение. Таким образом, заявляемое изобретение соответствует критерию патентоспособности «промышленная применимость».
С30 (30)
C30 (30)
С18 (50)
С18 (50)
С27 (20)
C30 (30)
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ПОЛУЧЕНИЯ РЕАГЕНТА ДЛЯ СНИЖЕНИЯ ГИДРОДИНАМИЧЕСКОГО СОПРОТИВЛЕНИЯ ТУРБУЛЕНТНОГО ПОТОКА ЖИДКИХ УГЛЕВОДОРОДОВ В ТРУБОПРОВОДАХ С РЕЦИКЛОМ СОЛЬВЕНТА | 2018 |
|
RU2667897C1 |
СПОСОБ ПОЛУЧЕНИЯ ПРОТИВОТУРБУЛЕНТНОЙ ПРИСАДКИ НА ОСНОВЕ ПОЛИАЛЬФАОЛЕФИНОВ (ВАРИАНТЫ) | 2015 |
|
RU2590535C1 |
СПОСОБ ПОЛУЧЕНИЯ РЕАГЕНТА ДЛЯ СНИЖЕНИЯ ГИДРОДИНАМИЧЕСКОГО СОПРОТИВЛЕНИЯ ПОТОКА ЖИДКИХ УГЛЕВОДОРОДОВ В ТРУБОПРОВОДАХ | 2015 |
|
RU2599245C1 |
АГЕНТ СНИЖЕНИЯ ГИДРОДИНАМИЧЕСКОГО СОПРОТИВЛЕНИЯ И СПОСОБ ЕГО ПОЛУЧЕНИЯ | 2015 |
|
RU2599986C1 |
ПРОТИВОТУРБУЛЕНТНАЯ ПРИСАДКА И СПОСОБ ЕЕ ПОЛУЧЕНИЯ | 2015 |
|
RU2579588C1 |
СПОСОБ ПОЛУЧЕНИЯ АГЕНТА СНИЖЕНИЯ ГИДРОДИНАМИЧЕСКОГО СОПРОТИВЛЕНИЯ УГЛЕВОДОРОДНЫХ ЖИДКОСТЕЙ | 2000 |
|
RU2171817C1 |
СПОСОБ ПОЛУЧЕНИЯ АНТИТУРБУЛЕНТНОЙ ПРИСАДКИ ДЛЯ УГЛЕВОДОРОДНЫХ РАКЕТНЫХ ТОПЛИВ | 2015 |
|
RU2612135C1 |
СПОСОБ ПОЛУЧЕНИЯ ПРОТИВОТУРБУЛЕНТНОЙ ПРИСАДКИ И ПРОТИВОТУРБУЛЕНТНАЯ ПРИСАДКА, ПОЛУЧЕННАЯ НА ЕГО ОСНОВЕ | 2015 |
|
RU2579583C1 |
СПОСОБ ПОЛУЧЕНИЯ РЕАГЕНТА ДЛЯ СНИЖЕНИЯ ГИДРОДИНАМИЧЕСКОГО СОПРОТИВЛЕНИЯ ТУРБУЛЕНТНОГО ПОТОКА ЖИДКИХ УГЛЕВОДОРОДОВ В ТРУБОПРОВОДАХ | 2017 |
|
RU2648079C1 |
СПОСОБ ПОЛУЧЕНИЯ ПРОТИВОТУРБУЛЕНТНОЙ ПРИСАДКИ С РЕЦИКЛОМ МОНОМЕРОВ, СПОСОБ ПОЛУЧЕНИЯ ПРОТИВОТУРБУЛЕНТНОЙ ПРИСАДКИ, СПОСОБ ПОЛУЧЕНИЯ ВЫСШИХ ПОЛИ-α-ОЛЕФИНОВ ДЛЯ ЭТИХ СПОСОБОВ И ПРОТИВОТУРБУЛЕНТНАЯ ПРИСАДКА НА ИХ ОСНОВЕ | 2012 |
|
RU2505551C2 |
Изобретение относится к нефтехимии, а именно к полимерным химическим реагентам, снижающим гидродинамическое сопротивление, возникающее при транспорте углеводородных жидкостей по трубопроводам. Описан способ получения полимерных основ для противотурбулентных присадок. Способ включает полимеризацию α-олефинов C6-C30 в присутствии в качестве катализатора продукта восстановления тетрахлорида титана алюминийорганическим соединением, и в качестве сокатализатора комплекса на основе 3-тиа-1,5-диазабицикло[3.2.1]октана и диметилалюминийхлорида. Молярное соотношение реагентов - α-олефин 1, катализатор 0,002-0,004, сокатализатор 0,02-0,04. Реакцию полимеризации проводят в интервале температур от -20° до +20°C в течение 8-12 часов. Технический результат - увеличение выхода целевого продукта и его молекулярной массы, снижение молекулярно-массового распределения. 1 табл., 2 пр.
Способ получения полимерных основ для противотурбулентных присадок, включающий полимеризацию высших альфа-олефинов в присутствии в качестве катализатора продукта восстановления тетрахлорида титана алюминийорганическим соединением и алюминийорганического сокатализатора в интервале температур от -20°C до +20°C, отличающийся тем, что в качестве высших альфа-олефинов используют олефины с числом атомов углерода от 6 до 30, а в качестве алюминийорганического сокатализатора используют комплекс на основе 3-тиа-1,5-диазабицикло[3.2.1]октана и диметилалюминийхлорида при следующем молярном соотношении реагентов:
причем реакцию проводят в течение 8-12 ч.
Приспособление для разматывания лент с семенами при укладке их в почву | 1922 |
|
SU56A1 |
RU 2006119287 A1, 27.02.2008 | |||
НЕСЫН Г.В | |||
и др | |||
Антитурбулентная присадка суспензионного типа на основе полимеров высших альфа-олефинов | |||
- Известия Томского политехнического университета, 2006, т.309, №3, с.112-115 | |||
US 4647633 A, 03.03.1987 | |||
СПОСОБ ПОЛУЧЕНИЯ АГЕНТА СНИЖЕНИЯ ГИДРОДИНАМИЧЕСКОГО СОПРОТИВЛЕНИЯ УГЛЕВОДОРОДНЫХ ЖИДКОСТЕЙ | 2003 |
|
RU2238282C1 |
Авторы
Даты
2013-07-10—Публикация
2012-06-13—Подача