СПОСОБ ИСПОЛЬЗОВАНИЯ УГЛЯ В ПАРОГАЗОВОЙ УСТАНОВКЕ НА ОСНОВЕ ПРОЦЕССА ПИРОЛИЗА Российский патент 2013 года по МПК C10B49/02 F02C3/28 

Описание патента на изобретение RU2487158C2

Изобретение относится к теплоэнергетике, а именно к способу получения высокотемпературного воздуха для использования его в качестве рабочего тела в газовой турбине.

Развитие парогазовой технологии в энергетике в настоящее время ограничивается в основном использованием природного газа в качестве топлива для камер сгорания газовых газотурбинных установок (ГТУ) в составе ПГУ. Создание угольных парогазовых установок (ПГУ) связано с двумя основными направлениями: газификация угля (преобразование углеродной массы в газообразное топливо) и технология с «внешним» сжиганием. Сущность технологии заключается в получении высокотемпературного воздуха для использовании в качестве рабочего тела в газовой турбине путем нагрева циклового воздуха за компрессором с использованием в качестве нагревающей среды продуктов сжигания топлива. Для повышения экономичности современных ПГУ температура на входе в проточную часть ГТУ должна составлять порядка 1500°C. Создание столь термонапряженных конструкций требует применения таких материалов, которые в настоящее время отсутствуют. При таких условиях возможно использование гибридной технологии, предусматривающей ступенчатый подогрев рабочего тела.

Известен способ комплексной термической переработки твердого топлива (патент RU 2340651 C1, C10B 49/22, C10J 3/58, F02C 3/28, опубл. 10.12.2008), выбранный за прототип. Способ включает дробление и сушку твердого топлива, его пиролиз в реакторе в псевдоожиженном слое твердым теплоносителем с получением парогазовой смеси и полукокса, вывод их из реактора и разделение. В качестве твердого топлива используют торф. Полученный полукокс выводят со стадии пиролиза вместе с парогазовой смесью. Очищают парогазовую смесь, часть которой сжигают в камере сгорания газовой турбины с выработкой электроэнергии и последующей утилизацией сбросных газов. Полукокс разделяют в сепараторе полукокса на два потока по фракциям. Крупную фракцию направляют в активатор для получения активного угля, а мелкую - в газогенератор для получения генераторного газа, который затем очищают и в смеси с оставшейся частью парогазовой смеси кондиционируют с получением синтез-газа, который подают в реактор на синтез жидких углеводородов с получением жидких топлив. Активный уголь направляют в качестве сорбционного материала для очистки парогазовой смеси и генераторного газа, а отработанный активный уголь возвращают на стадию газификации. Твердый теплоноситель нагревают в технологической топке за счет его частичного сжигания с образованием дымовых газов и возвращают на стадию пиролиза.

Однако указанный способ ограничен только подготовкой топлива и не связан с парогазовой технологией производства электроэнергии.

Наиболее близким техническим решением, выбранным в качестве прототипа, является способ организации парогазового процесса, основанного на сжигании угля, который включает двухступенчатый подогрев циклового воздуха, выходящего после компрессора путем подачи его в высокотемпературный воздухоподогреватель высокого давления с последующим догревом его в камере сгорания газовой турбины за счет сжигания стороннего топлива, например, природного газа. (Липец А.У., Кузнецова С.М., Дирина Л.В. и др. «Газоугольные парогазовые установки», ж-л «Энергетик», №5, 2004).

Недостатком данной технологии является необходимость привлечения стороннего источника вспомогательного топлива, например, природный газ, для догрева циклового воздуха после высокотемпературного воздухоподогревателя до расчетной температуры рабочего тела на входе в газовую турбину, что ограничивает применение данной технологии при отсутствии природного газа.

Использование в паровоздушном котле рядовых углей предполагает необходимость организации очистки дымовых газов от соединений серы, оксидов азота, образующихся в значительной мере из азотных соединений топлива.

Технической задачей изобретения является разработка монотопливной технологии для обеспечения парогазового процесса энергопроизводства.

Технический результат предлагаемой технологии заключается в расширении сферы применения парогазовых установок, повышении их экономичности и экологичности.

Для решения поставленной технической задачи и достижения технического результата в парогазовой технологии, включающей двухступенчатый нагрев циклового воздуха: после выхода из компрессора цикловой воздух подают на подогрев в высокотемпературный подогреватель высокого давления с последующим догревом воздуха до расчетной температуры и подачей нагретого воздуха в газовую турбину, согласно изобретению, используют монотопливную технологию на основе, где в качестве топлива для паровоздушного котла с высокотемпературным воздухоподогревателем используют твердый продукт пиролиза - полукокс, а для догрева воздуха непосредственно перед газовой турбиной - пиролизный газ.

При этом:

- продукты пиролиза подвергают очистке от соединений серы и азота непосредственно в пиролизере;

- жидкую фракцию продуктов пиролиза используют для нагрева исходного угля до расчетной температуры процесса пиролиза в пиролизере.

Использование в качестве топлива продуктов пиролиза угля исключает необходимость для работы парогазовой установки использования отдельного, стороннего источника топлива, например, природного газа, что значительно расширяет возможности предложенной технологии.

Проведение процесса пиролиза при среднетемпературной обработке угля 800-850°C позволяет получить три продукта: пиролизный газ, полукокс, жидкие фракции.

Все полученные виды топлив в процессе пиролиза (полукокс, пиролизный газ, жидкие продукты пиролиза) являются экологически чистыми, освобожденными в процессе пиролиза от соединений серы и окислов азота, что обеспечивает экологичность предложенной технологии.

Использование жидкой фракции продуктов пиролиза для нагрева исходного угля до расчетной температуры процесса пиролиза в пиролизере позволяет значительно сэкономить тепловую энергию и, следовательно, повысить экономичность предложенной технологии.

Предлагаемая парогазовая технология на основе пиролиза угля реализуется с помощью схемы, изображенной на рисунке.

Схема включает три блока:

А - блок пиролиза угля; Б - газотурбинный блок с высокотемпературным воздухоподогревателем; В - паротурбинный блок с парогенерирующим трактом воздушо-парового котла.

Технологическая схема блока А содержит пиролизер 1 с камерой генерации 2 газового теплоносителя, куда поступает угольная пыль 3, воздух 4 и вспомогательное топливо 5. В камере 2 происходит сжигание вспомогательного топлива 5, выделющиеся при этом продукты сгорания служат теплоносителем для нагрева угольной пыли 3 до температуры процесса пиролиза, который развивается в полости пиролизера 1. Продукты пиролиза на выходе из пиролизера 1 распределяются следующим образом: полукокс 6 поступает в блок Б, парогазовая смесь 7 направляется на очистку и сепарацию газа в фильтр-сепаратор 8, в котором происходит разделение смолы, бензиновых фракций и пиролизного газа. Парообразные жидкие продукты по каналу 9 подаются в камеру генерации газового теплоносителя 2, где используются в качестве вспомогательного топлива. Выделенный из парогазовой смеси и очищенный в фильтре-сепараторе 8 пиролизный газ поступает в дожимной компрессор 10, в котором давление пиролизного газа повышается на 1-1,5 кгс/см2 выше давления циклового воздуха. Под этим давлением пиролизный газ подается в блок Б.

В технологическом блоке Б воздух после компрессора 15 по каналу 16 подается в высокотемпературный воздухоподогреватель 22 паровоздушного котла 17. Подогретый воздух затем по тракту 20 высокотемпературного воздуха поступает в узел догрева 12, в который по газопроводу 11 высокого давления поступает пиролизный газ. За счет сгорания пиролизного газа в потоке раскаленного воздуха происходит подогрев циклового воздуха до необходимой температуры на входе в проточную часть газовой турбины 14 (например, 1400-1500°C). Часть пиролизного газа по каналу 13 может поступать непосредственно в проточную часть газовой турбины 13 для промежуточного подогрева воздуха. Выхлопные газы по каналу 21 подаются в горелки 18 воздушно-парового котла, выполняя функцию окислителя для сжигания полукокса.

В паротурбинном блоке В продукты сгорания полукокса из топки котла 17 поступают к парогенерирующим поверхностям нагрева 19, связанным с паровой турбиной 23. Паротурбинный блок содержит также конденсатор 24 пара, конденсатный питательный насос 25.

Таким образом, предлагаемая технология позволяет получить три продукта (три вида топлива) - пиролизный газ, жидкие фракции, полукокс. Все продукты процесса пиролиза угля - газовые, парообразные и твердые - используют для производства рабочего тела для газовой турбины.

Использование предложенной парогазовой технологии на основе пиролиза угля позволяет применять ее в условиях, когда отсутствуют дополнительные источники топлива, например, природного газа и др.

Предложенная технология экономически эффективна, т.к. позволяет повысить КПД угольных ТЭС на 30-40% и значительно сократить расходы на собственные нужды.

Продукты пиролиза являются экологически чистыми, т.к. полукокс не содержит связанного азота, а пиролизный газ - соединений серы.

Кроме того, предложенная технология исключает применение жаростойких материалов, что очень важно для современного состояния техники.

Габариты аппаратов термообработки угля в режиме пиролиза значительно меньше, чем в газогенераторном процессе, что позволяет размещать их непосредственно вблизи горелок котла, прямо транспортировать раскаленный полукокс к горелкам и далее в топку без предварительного охлаждения.

Предлагаемое техническое решение соответствует критерию «новизна», т.к. из уровня техники не известны технические решения с предложенной совокупностью существенных признаков.

Похожие патенты RU2487158C2

название год авторы номер документа
ПАРОГАЗОВАЯ УСТАНОВКА С ПИРОЛИЗОМ УГЛЯ 2009
  • Шульман Владимир Львович
  • Зайцев Александр Валерьевич
  • Богатова Татьяна Феоктистовна
  • Рыжков Александр Филиппович
RU2387847C1
СПОСОБ И УСТАНОВКА ДЛЯ ТЕРМИЧЕСКОЙ ПЕРЕРАБОТКИ ТВЕРДОГО ТОПЛИВА С ПОЛУЧЕНИЕМ ПОЛУКОКСА, ГАЗА И ЖИДКИХ ПРОДУКТОВ 2007
  • Кожицев Дмитрий Васильевич
  • Кенеман Федор Евгеньевич
  • Гольмшток Эдуард Ильич
  • Петров Михаил Сергеевич
  • Блохин Александр Иванович
  • Салихов Руслан Минуллаевич
  • Стельмах Геннадий Павлович
RU2378318C2
ПИРОЛИЗЕР ДЛЯ ПЫЛЕВИДНОГО УГЛЯ 2007
  • Шульман Владимир Львович
  • Киселева Анна Андреевна
  • Зайцев Александр Валерьевич
  • Богатова Татьяна Феоктистовна
  • Рыжков Александр Филиппович
  • Силин Вадим Евгеньевич
RU2349623C1
УСТРОЙСТВО ПОЛЕЗНОГО ИСПОЛЬЗОВАНИЯ СУБЛИМИРОВАННЫХ ОРГАНИЧЕСКИХ ОСТАТКОВ ЖИЗНЕДЕЯТЕЛЬНОСТИ КОСМОНАВТОВ 2010
  • Голодяев Александр Иванович
  • Доброквашин Евгений Александрович
  • Сукочев Андрей Иванович
  • Шалимов Юрий Николаевич
RU2441820C2
СПОСОБ ТЕРМИЧЕСКОЙ ПЕРЕРАБОТКИ УГЛЕРОДОСОДЕРЖАЩЕГО СЫРЬЯ С ПОЛУЧЕНИЕМ УГЛЕРОДНЫХ СОРБЕНТОВ И УСТАНОВКА ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2000
  • Волков Э.П.
  • Гаврилов Е.И.
  • Кенеман Ф.Е.
  • Блохин А.И.
  • Карпенко Е.И.
  • Мессерле В.Е.
  • Никитин Ю.В.
RU2174948C1
СПОСОБ ПЕРЕРАБОТКИ ОРГАНИЧЕСКОГО СЫРЬЯ С ПОЛУЧЕНИЕМ СИНТЕТИЧЕСКОГО ТОПЛИВНОГО ГАЗА В УСТАНОВКЕ ВЫСОКОТЕМПЕРАТУРНОГО АБЛЯЦИОННОГО ПИРОЛИЗА ГРАВИТАЦИОННОГО ТИПА 2020
  • Юрченко Юрий Федорович
RU2721695C1
СПОСОБ СЖИГАНИЯ ЖИДКОГО УГОЛЬНОГО ТОПЛИВА 2014
  • Лунев Владимир Иванович
  • Лунев Сергей Владимирович
  • Загнеев Петр Степанович
  • Загнеев Денис Петрович
  • Усенко Александр Иванович
  • Усенко Андрей Александрович
RU2552016C2
СИСТЕМА ВНУТРИЦИКЛОВОЙ ГАЗИФИКАЦИИ ТВЕРДОГО ТОПЛИВА С ПРОМЫШЛЕННОЙ ВЫРАБОТКОЙ ПОЛУКОКСА 2005
  • Сучков Сергей Иванович
  • Срибнер Николай Григорьевич
  • Сомов Александр Анатольевич
RU2282655C1
СПОСОБ И УСТАНОВКА ДЛЯ ТЕРМИЧЕСКОЙ ПЕРЕРАБОТКИ МЕЛКОЗЕРНИСТОГО ТОПЛИВА 2001
  • Кенеман Ф.Е.
  • Блохин А.И.
  • Никитин А.Н.
  • Филатова Л.А.
  • Габибов А.О.
  • Монахова Е.М.
RU2183651C1
СПОСОБ ТЕРМИЧЕСКОЙ ПЕРЕРАБОТКИ БУРЫХ УГЛЕЙ С ВЫРАБОТКОЙ ЭЛЕКТРОЭНЕРГИИ И УСТАНОВКА ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2001
  • Воронин В.П.
  • Волков Э.П.
  • Гаврилов Е.И.
  • Гаврилов А.Ф.
  • Блохин А.И.
  • Бычков А.М.
  • Стельмах Г.П.
  • Кенеман Ф.Е.
RU2211927C1

Иллюстрации к изобретению RU 2 487 158 C2

Реферат патента 2013 года СПОСОБ ИСПОЛЬЗОВАНИЯ УГЛЯ В ПАРОГАЗОВОЙ УСТАНОВКЕ НА ОСНОВЕ ПРОЦЕССА ПИРОЛИЗА

Изобретение может быть использовано в теплоэнергетике. Цикловый воздух нагревают в две ступени: после выхода из компрессора цикловой воздух подают на подогрев в высокотемпературный подогреватель высокого давления, затем его догревают до расчетной температуры непосредственно поступлением циклового нагретого воздуха в газовую турбину. В качестве топлива для паровоздушного котла с высокотемпературным воздухоподогревателем используют твердый продукт пиролиза - полукокс. Для догрева воздуха непосредственно перед газовой турбиной используют пиролизный газ. Парообразные продукты жидкой фракции продуктов пиролиза используют для нагрева исходного угля до расчетной температуры процесса пиролиза в пиролизере. Продукты пиролиза подвергают очистке от соединений серы и азота непосредственно в пиролизере. Технический результат заключается в расширении сферы применения парогазовых установок, повышении их экономичности и экологичности. 1 з.п. ф-лы, 1 ил.

Формула изобретения RU 2 487 158 C2

1. Способ использования угля в парогазовой установке на основе процесса пиролиза, включающий двухступенчатый нагрев циклового воздуха: после выхода из компрессора цикловой воздух подают на подогрев в высокотемпературный подогреватель высокого давления с последующим догревом воздуха до расчетной температуры непосредственно поступлением циклового нагретого воздуха в газовую турбину, отличающийся тем, что используют монотопливную технологию, где в качестве топлива для паровоздушного котла с высокотемпературным воздухоподогревателем используют твердый продукт пиролиза - полукокс, для догрева воздуха непосредственно перед газовой турбиной - пиролизный газ, а парообразные продукты жидкой фракции продуктов пиролиза используют для нагрева исходного угля до расчетной температуры процесса пиролиза в пиролизере.

2. Способ использования угля в парогазовой установке по п.1, отличающийся тем, что продукты пиролиза подвергают очистке от соединений серы и азота непосредственно в пиролизере.

Документы, цитированные в отчете о поиске Патент 2013 года RU2487158C2

ЛИПЕЦ А.У
и др
Газоугольные парогазовые установки
- Энергетик, 2004, №5, с.22-24
ПАРОГАЗОВАЯ УСТАНОВКА С ПИРОЛИЗОМ УГЛЯ 2009
  • Шульман Владимир Львович
  • Зайцев Александр Валерьевич
  • Богатова Татьяна Феоктистовна
  • Рыжков Александр Филиппович
RU2387847C1
СПОСОБ ПОЛУЧЕНИЯ ЭНЕРГИИ ИЗ УГЛЯ 2008
  • Предтеченский Михаил Рудольфович
  • Пуховой Максим Валерьевич
RU2373259C1
US 2004192981 A1, 30.09.2004
БОЛЬШОЙ ЭНЦИКЛОПЕДИЧЕСКИЙ СЛОВАРЬ ПОЛИТЕХНИЧЕСКИЙ
/Под ред
А.Ю
Ишлинского
- М.: Большая Российская энциклопедия, 2000, с.103.

RU 2 487 158 C2

Авторы

Шульман Владимир Львович

Зайцев Александр Валерьевич

Богатова Татьяна Феоктистовна

Рыжков Александр Филиппович

Скобочкин Юрий Васильевич

Шульман Даниил Львович

Дегтярев Максим Борисович

Даты

2013-07-10Публикация

2010-05-31Подача