Изобретение относится к области гидролокации и предназначено для обнаружения подводных целей в водной среде и получения их акустического изображения.
Предложенная система гидролокации может быть использована при охране береговых объектов или судов на стоянке со стороны водной среды, контроле подводной обстановки и состояния подводных сооружений, входов в бухты и порты, мостов, каналов, акваторий гидро и атомных станций. Основное назначение системы - обнаружение, сопровождение обнаруженных объектов в водной среде и их идентификация за счет получения акустического изображения обнаруженных объектов в водной среде, где оптические методы не эффективны.
Известны технические решения предназначенных для этих целей гидролокаторов-звуковизоров [1], которые обнаруживают объекты в воде и получают их акустическое изображение. Недостатком известных гидролокаторов-звуковизоров являются ограничения по дальности обнаружения целей, обусловленные применением в этих приборах высокочастотного акустического излучения. Обычно это работа на частотах в сотни кГц. На столь высоких частотах зона действия прибора, особенно в мелководных прибрежных областях, ограничена расстояниями, не превышающими 20-40 м, что обусловлено значительным поглощением энергии звука в воде на высоких частотах. В результате использование таких устройств встречает затруднения, например в системах охраны, где требуется предварительное обнаружение нарушителя на дальних расстояниях, приемлемых для принятия необходимых мер противодействия.
Поскольку указанные потери энергии звука резко возрастают с частотой, одним из известных методов их уменьшения является снижение частоты зондирующего сигнала, однако при этом сложно обеспечить необходимую четкость акустического изображения.
Задача, на решение которой направлено предложенное изобретение, заключается в создании системы гидролокации с простой реализацией и расширенной зоной действия, в которой компенсируется этот недостаток гидролокатора-звуковизора, проявляющийся при необходимости предварительного дальнего обнаружения и сопровождения целей в воде, а затем получения на сравнительно близких расстояниях акустического изображения обнаруженного объекта.
Для решения поставленной задачи предложена система параметрической гидролокации, включающая продольное звуковое зондирование водной толщи и прием отраженных от цели зондирующих сигналов [2]. При этом для дальнего обнаружения целей в воде используют совместное излучение двух исходных высокочастотных сигналов с разными частотами, например 400 и 450 кГц, для получения за счет нелинейного преобразования частот в воде низкочастотного сигнала излучения разностной частоты, в нашем случае 50 кГц, а для получения акустического изображения обнаруженных в воде объектов на сравнительно близких расстояниях от излучателя используют исходные высокочастотные сигналы.
Предпосылкой возможности осуществления системы являются известные физические процессы, сопровождающие распространение в воде акустических колебаний, используемых в активной гидролокации, в частности их быстрое затухание с расстоянием. Поэтому использование низкочастотной составляющей зондирующих сигналов позволяет регистрировать более высокие уровни отраженных от цели сигналов или, что эквивалентно, обнаруживать цели на больших расстояниях от зоны наблюдения, а использование исходных высокочастотных составляющих зондирующих сигналов для получения акустического изображения обнаруженных объектов позволяет обеспечить необходимую четкость изображения.
Сущность заявленной системы гидролокации целей поясняется рисунками:
фиг.1 - взаимное расположение излучателя и низкочастотного и высокочастотного приемников гидролокатора;
фиг.2 - оценка эффективности высокочастотной и низкочастотной составляющих зондирующего сигнала параметрического гидролокатора при излучении.
Состав и взаимное расположение излучателя и приемников гидролокатора показано на фиг.1, вид сверху, где 1 - излучатель исходных высокочастотных зондирующих акустических сигналов и образованных из них за счет нелинейного преобразования частот в воде низкочастотных зондирующих сигналов, создающий сектор облучения, выделенный штриховыми линиями на рисунке, 2 - приемник отраженных от цели низкочастотных зондирующих сигналов, 3 - приемник отраженных от цели исходных высокочастотных зондирующих сигналов, 4 - электронный комплекс обработки данных (ЭК), 5 - удаленная цель, например пловец-нарушитель, находящаяся в охраняемой зоне. ЭК состоит из соединенных между собой блоков излучения, приема сигналов и представления на экране монитора параметров обнаруженных целей (местоположение, скорость движения), траекторий их движения в охраняемой зоне и акустическое изображения обнаруженного объекта.
Система контролирует две зоны в пространстве перед излучателем - дальнюю зону, облучаемую низкочастотной составляющей зондирующего сигнала, и сравнительно близкую к излучателю зону, облучаемую исходными высокочастотными составляющими зондирующего сигнала.
При этом определение местоположения объекта, обнаруженного в дальней области, определяется в ЭК по временам и направлениям прихода на низкочастотный приемник гидролокатора отраженных от объекта зондирующих сигналов относительно момента излучения зондирующего сигнала с учетом скорости звука в воде и известного положения излучателя и приемника на дне. В свою очередь указанная последовательная обработка сигналов в ЭК позволяет сопровождать обнаруженный объект в зоне облучения, определять и отображать на экране монитора его траекторию и скорость движения.
В свою очередь, по мере приближения обнаруженного объекта к месту излучения попадание его в зону облучения исходными высокочастотными составляющими зондирующего сигнала позволяет формировать в ЭК акустическое изображение объекта по углам и временам прихода на высокочастотный приемник гидролокатора отраженных от объекта зондирующих сигналов относительно момента излучения зондирующего сигнала с учетом скорости звука в воде.
Преимуществом предлагаемой системы по сравнению с обычными гидролокационными средствами является совмещение в одном приборе нескольких взаимно дополняющих функций, распределенных во времени и пространстве - дальнего обнаружения объектов, их непрерывного сопровождения вплоть до возможности их идентификации на сравнительно близких расстояниях и, в итоге, получения акустического изображения обнаруженного объекта на расстояниях приемлемых для принятия необходимых мер противодействия. Практическое же воплощения предложенной системы параметрической гидролокации достаточно просто в изготовлении и мало по стоимости, поскольку увеличение функций достигается введением в известный параметрический гидролокатор относительно простого по конструкции и изготовлению приемника высокочастотных сигналов, формирующего акустическое изображение обнаруженного объекта с использованием известных принципов [1].
Каждый из признаков, включенных в формулу изобретения, необходим, а все вместе они достаточны для достижения поставленной цели, то есть в формулу изобретения включены существенные признаки.
Предложенная система параметрической гидролокации теоретически и экспериментально обоснована.
Считаем, что при нелинейном преобразовании частот в воде интенсивность низкочастотного зондирующего сигнала I уменьшается по сравнению с интенсивностью исходных высокочастотных составляющих Io примерно в 4000 раз. Учтем также потери низкочастотного зондирующего сигнала и исходных высокочастотных составляющих, связанные с затуханием звука при распространении в воде, вызванные поглощением энергии звука в водной среде.
Сравним обе составляющие зондирующего сигнала параметрического гидролокатора, высокочастотную и низкочастотную, при их распространении на расстояние r от излучателя. Обозначая отношение Io к I через
где βo и β - коэффициенты затухания звука в водном среде, соответственно для высоких и низких частот,
Результаты расчета
Техническим результатом настоящего изобретения является увеличение дальности обнаружения подводных целей с последующим получением акустического изображения обнаруженного объекта, достигаемое относительно простыми и недорогими средствами.
Литература
1. Грегуш П. Звуковидение. - М.: Мир, 1982.
2. Зарембо Л.К. Тимошенко В.И. Нелинейная акустика. М.: МГУ, 1984, 104 с.
название | год | авторы | номер документа |
---|---|---|---|
СИСТЕМА ГИДРОЛОКАЦИИ ЦЕЛЕЙ В УСЛОВИЯХ МЕЛКОВОДЬЯ | 2011 |
|
RU2461844C1 |
УСТРОЙСТВО ОПЕРАТИВНОГО ОСВЕЩЕНИЯ ПОДВОДНОЙ ОБСТАНОВКИ В АКВАТОРИЯХ МИРОВОГО ОКЕАНА | 2012 |
|
RU2522168C2 |
СПОСОБ И СИСТЕМА ОБНАРУЖЕНИЯ ОБЪЕКТОВ ПРИ ГИДРОЛОКАЦИИ | 2007 |
|
RU2358289C1 |
СИСТЕМА И СПОСОБ 3D ИССЛЕДОВАНИЯ МОРСКОГО ДНА ДЛЯ ИНЖЕНЕРНЫХ ИЗЫСКАНИЙ | 2015 |
|
RU2608301C2 |
МЕТОД И СИСТЕМА ОБНАРУЖЕНИЯ ЦЕЛЕЙ ПРИ ГИДРОЛОКАЦИИ | 2008 |
|
RU2383899C1 |
СПОСОБ ГИДРОЛОКАЦИИ В МЕЛКОВОДНЫХ ОБЛАСТЯХ С ОПЕРАТИВНЫМ КОНТРОЛЕМ ИЗМЕНЧИВОСТИ УСЛОВИЙ ОБНАРУЖЕНИЯ ПОДВОДНОЙ ЦЕЛИ | 2017 |
|
RU2664869C1 |
СПОСОБ И СИСТЕМА КОМПЕНСАЦИИ МАСКИРУЮЩЕГО ВЛИЯНИЯ РЕВЕРБЕРАЦИОННЫХ ПОМЕХ НА ОБНАРУЖЕНИЕ ПОДВОДНЫХ ЦЕЛЕЙ ПРИ ГИДРОЛОКАЦИИ | 2013 |
|
RU2548942C1 |
СПОСОБ И СИСТЕМА ОПРЕДЕЛЕНИЯ ПОЛОЖЕНИЯ НАБЛЮДАЕМОГО ОБЪЕКТА ПО ГЛУБИНЕ В ВОДНОЙ СРЕДЕ | 2007 |
|
RU2343502C2 |
Способ гидролокационного обнаружения высокоскоростного малоразмерного объекта | 2020 |
|
RU2740158C1 |
СПОСОБ ВОССТАНОВЛЕНИЯ РЕЛЬЕФА МОРСКОГО ДНА ПРИ ИЗМЕРЕНИЯХ ГЛУБИН ПОСРЕДСТВОМ ГИДРОАКУСТИЧЕСКИХ СРЕДСТВ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 2010 |
|
RU2429507C1 |
Использование: изобретение относится к области гидролокации и предназначено для обнаружения подводных целей и получения их акустического изображения. Сущность: в предложенной системе параметрической гидролокации излучение низкочастотных зондирующих сигналов формируют путем нелинейного преобразования частот в воде от излучателя, создающего сектор облучения, а прием отраженных от подводных целей зондирующих сигналов ведут на приемник низкочастотных сигналов и на приемник исходных высокочастотных сигналов. Определение местоположения обнаруженной цели и параметров ее движения в пределах сектора облучения, а также формирование акустического изображения обнаруженного объекта осуществляется в электронном комплексе обработки данных (ЭК) по углам и временам прихода отраженных от цели зондирующих сигналов, соответственно на приемник низкочастотных сигналов и приемник исходных высокочастотных сигналов, относительно момента излучения зондирующего сигнала с учетом скорости звука в воде и известного положения излучателя и приемников. ЭК состоит из соединенных между собой блоков излучения, приема сигналов и представления на экране монитора параметров обнаруженных целей (местоположение, скорость движения), траекторий их движения в охраняемой зоне и акустического изображения обнаруженного объекта. Технический результат: увеличение дальности обнаружения подводных целей и получение акустического изображения обнаруженного объекта. 2 з.п. ф-лы, 2 ил.
1. Система параметрической гидролокации с функцией получения акустического изображения целей, содержащая излучатель исходных высокочастотных зондирующих акустических сигналов и образованных из них за счет нелинейного преобразования частот в воде низкочастотных зондирующих сигналов и приемник отраженных от цели низкочастотных зондирующих сигналов, соединенных с электронным комплексом обработки данных, как в обычной параметрической гидролокации, отличающаяся тем, что в состав системы дополнительно включен приемник отраженных от цели исходных высокочастотных зондирующих сигналов, соединенный с электронным комплексом обработки данных.
2. Система по п.1, отличающаяся тем, что определение местоположения обнаруженной цели и параметров ее движения в пределах сектора облучения, а также формирование акустического изображения обнаруженной цели осуществляется в электронном комплексе обработки данных по углам и временам прихода отраженных от цели зондирующих сигналов соответственно на приемник низкочастотных сигналов и на приемник исходных высокочастотных зондирующих сигналов гидролокатора относительно момента излучения зондирующего сигнала с учетом скорости звука в воде и известного положения излучателя и приемников.
3. Система по п.1, отличающаяся тем, что электронный комплекс обработки данных состоит из соединенных между собой блоков излучения, приема сигналов и представления на экране монитора параметров обнаруженных целей, траекторий их движения и изображений целей.
ПАРАМЕТРИЧЕСКИЙ ЭХО-ИМПУЛЬСНЫЙ ЛОКАТОР | 1996 |
|
RU2133047C1 |
Грегуш П | |||
Звуковидение | |||
- М.: Мир, 1982, с.163-174 | |||
Тимошенко В.И | |||
Нелинейная акустика в инновационных технологиях | |||
- Известия ЮФУ | |||
Технические науки | |||
Приспособление для точного наложения листов бумаги при снятии оттисков | 1922 |
|
SU6A1 |
- Таганрог, 2009, с.1-21 | |||
US 5235558 A, 10.08.1993 | |||
US 5237541 A, 17.08.1993. |
Авторы
Даты
2013-07-27—Публикация
2012-01-30—Подача