СПОСОБ ОПРЕДЕЛЕНИЯ РАДИУСА КРИВИЗНЫ ВОГНУТОЙ ОПТИЧЕСКОЙ СФЕРИЧЕСКОЙ ПОВЕРХНОСТИ МЕТОДОМ ОПТИЧЕСКОЙ ДАЛЬНОМЕТРИИ Российский патент 2013 года по МПК G01B11/255 

Описание патента на изобретение RU2491504C2

1. Область техники, к которой относится изобретение

Оптика, оптические измерения.

2. Уровень техники

Известен способ определения радиуса кривизны вогнутой оптической сферической поверхности с помощью автоколлимационного микроскопа, который сначала фокусируется на центр кривизны вогнутой оптической сферической поверхности, при этом снимается отсчет подвижного основания микроскопа или сферической поверхности, затем микроскоп фокусируется на вершину вогнутой оптической сферической поверхности и снимается второй отсчет. Разница между этими отсчетами и есть радиус кривизны. Однако данный способ предполагает наличие точной направляющей, по которой передвигается корпус микроскопа или сферическая поверхность. (См. Афанасьев В.А. «Оптические измерения» М. Высшая школа. 1981 г. Стр.52-56). Другой способ измерения радиуса кривизны оптической поверхности при отсутствии точной направляющей предполагает использование автоколлимационной трубы, а косвенное измерение радиуса кривизны оптической поверхности производится по формуле, в которую входят фокусное расстояние объектива автоколлимационной трубы, расстояние между вершиной измеряемой поверхности и передней главной плоскостью объектива и измеренная прямым способом величина перемещения окуляра автоколлимационной трубы. (См. Креопалова Г.В., Лазарева Н.Л., Пуряев Д.Т. «Оптические измерения».: М. Машиностроение. 1987 г. Стр.89-91). Однако, в этом случае наличие нескольких составляющих в формуле увеличивает неопределенность измерения радиуса кривизны. Прототипом является способ измерения радиуса кривизны вогнутой оптической сферической поверхности с помощью автоколлимационного микроскопа. Аналогом изобретения является определение радиуса кривизны вогнутой оптической сферической поверхности с помощью автоколлимационной трубы. Но ни прототип, ни аналог не обеспечивают уменьшения неопределенности измерения радиуса кривизны вогнутой оптической сферической поверхности в условиях невозможности использования точной направляющей.

3. Раскрытие изобретения

В основу изобретения положена задача осуществить способ измерения радиуса кривизны вогнутой оптической сферической поверхности с уменьшенной неопределенностью и в условиях невозможности использования точной направляющей. Для решения поставленной задачи, в известном способе определения радиуса кривизны вогнутой оптической сферической поверхности с помощью автоколлимационного микроскопа, сначала фокусируемого в центр кривизны вогнутой оптической сферической поверхности, фиксируют первое положение подвижного основания микроскопа или вогнутой оптической сферической поверхности, затем фокусируемого на вершину оптической сферической поверхности, фиксируют второе положение подвижного основания микроскопа или оптической сферической поверхности, находят разницу между этими положениями, которая и будет радиусом кривизны вогнутой оптической сферической поверхности, отличающийся тем, что при неподвижном положении вогнутой оптической сферической поверхности и автоколлимационного микроскопа, фокусируемого в центр кривизны вогнутой оптической сферической поверхности, методом оптической дальнометрии, с помощью оптического пучка, проходящего по тому же оптическому тракту, что и визуальный пучок автоколлимационного микроскопа, определяют дальность до вогнутой оптической сферической поверхности, затем устанавливают в центр кривизны вогнутой оптической сферической поверхности предмет и определяют дальность до этого предмета методом оптической дальнометрии, с помощью оптического пучка, проходящего по тому же оптическому тракту, что и визуальный пучок автоколлимационного микроскопа, находят разницу между этими двумя дальностями, которая и будет радиусом кривизны вогнутой оптической сферической поверхности. Благодаря введению в известный способ совокупности отличительных признаков позволяет измерить радиус кривизны вогнутой оптической сферической поверхности с уменьшенной неопределенностью и в условиях невозможности использования точной направляющей.

4. Осуществление изобретения.

Для осуществления способа измерения радиуса кривизны вогнутой оптической сферической поверхности с уменьшенной неопределенностью и в условиях невозможности использования точной направляющей фокусируют автоколлимационный микроскоп на центр кривизны вогнутой оптической сферической поверхности и одним из известных методов оптической дальнометрии (например, методом фазовой дальнометрии), с помощью оптического пучка, проходящего по тому же оптическому тракту, что и визуальный пучок автоколлимационного микроскопа, определяют дальность до вогнутой оптической сферической поверхности, затем, например, по критерию наибольшей резкости изображения в микроскопе, устанавливают в центр кривизны вогнутой оптической сферической поверхности предмет и определяют дальность до этого предмета тем же методом оптической дальнометрии, с помощью того же оптического пучка, проходящего по тому же оптическому тракту, что и визуальный пучок автоколлимационного микроскопа, находят разницу между этими двумя дальностями, которая и будет радиусом кривизны вогнутой оптической сферической поверхности.

Похожие патенты RU2491504C2

название год авторы номер документа
Способ определения радиуса кривизны вогнутой оптической сферической поверхности с центральным осевым отверстием методом оптической дальнометрии 2017
  • Барышников Николай Васильевич
  • Денисов Дмитрий Геннадьевич
  • Животовский Илья Вадимович
  • Карасик Валерий Ефимович
  • Мухина Елена Евгеньевна
  • Сахаров Алексей Александрович
  • Соколовский Василий Александрович
RU2695085C2
АВТОКОЛЛИМАЦИОННОЕ УСТРОЙСТВО ДЛЯ ЦЕНТРИРОВКИ ОПТИЧЕСКИХ ЭЛЕМЕНТОВ 2019
  • Вензель Владимир Иванович
  • Семенов Андрей Александрович
RU2705177C1
Интерферометр для контроля качества оптических поверхностей и систем 1990
  • Кирилловский Владимир Константинович
  • Гвоздев Сергей Семенович
  • Петрученко Игорь Ростиславович
  • Прохоренко Татьяна Валерьевна
SU1765803A1
Способ контроля радиуса кривизны оптических сферических поверхностей 1990
  • Курибко Анатолий Александрович
  • Селезнев Николай Сысоевич
SU1747881A1
Способ контроля радиуса кривизны сферических поверхностей оптических деталей 1987
  • Контиевский Юрий Петрович
  • Бакеркин Александр Владимирович
SU1460600A1
Однозрачковый прицел с лазерным дальномером 2016
  • Медведев Александр Владимирович
  • Гринкевич Александр Васильевич
  • Князева Светлана Николаевна
RU2647531C1
Интерферометр для контроля качества по-ВЕРХНОСТи ОпТичЕСКиХ дЕТАлЕй 1979
  • Бубис Исак Яковлевич
  • Кузнецов Алексей Иванович
SU794362A1
СПОСОБ ИЗМЕРЕНИЯ ПАРАМЕТРОВ ОПТИЧЕСКИХ СИСТЕМ 2005
  • Бугаенко Елена Ивановна
  • Титов Виталий Семенович
  • Труфанов Максим Игоревич
RU2315965C2
СПОСОБ ФОКУСИРОВКИ ОПТИЧЕСКОГО ИЗЛУЧЕНИЯ НА ОБЪЕКТ 2018
  • Бородин Владимир Григорьевич
  • Мигель Вячеслав Михайлович
RU2685573C1
Способ измерения радиуса кривизны сферической поверхности оптической детали 1990
  • Бакеркин Александр Владимирович
SU1747882A1

Реферат патента 2013 года СПОСОБ ОПРЕДЕЛЕНИЯ РАДИУСА КРИВИЗНЫ ВОГНУТОЙ ОПТИЧЕСКОЙ СФЕРИЧЕСКОЙ ПОВЕРХНОСТИ МЕТОДОМ ОПТИЧЕСКОЙ ДАЛЬНОМЕТРИИ

Изобретение может быть использовано для определения фокусного расстояния вогнутой оптической сферической поверхности при контроле и настройке оптических элементов. В способе автоколлимационный микроскоп фокусируют в центр кривизны вогнутой оптической сферической поверхности при ее неподвижном положении и неподвижном автоколлимационном микроскопе. Методом оптической дальнометрии с помощью оптического пучка, проходящего по тому же оптическому тракту, что и визуальный пучок автоколлимационного микроскопа, определяют дальность до вогнутой оптической сферической поверхности. Устанавливают в центр кривизны вогнутой оптической сферической поверхности предмет и определяют дальность до этого предмета также методом оптической дальнометрии, с помощью оптического пучка, проходящего по тому же оптическому тракту, что и визуальный пучок автоколлимационного микроскопа. Находят разницу между этими двумя дальностями, которая и будет радиусом кривизны вогнутой оптической сферической поверхности. Технический результат - уменьшение неопределенности определения радиуса в условиях невозможности использования точной направляющей.

Формула изобретения RU 2 491 504 C2

Способ определения радиуса кривизны вогнутой оптической сферической поверхности методом оптической дальнометрии, в котором автоколлимационный микроскоп фокусируют в центр кривизны вогнутой оптической сферической поверхности, отличающийся тем, что при неподвижном положении вогнутой оптической сферической поверхности и автоколлимационного микроскопа, фокусируемого в центр кривизны вогнутой оптической сферической поверхности, методом оптической дальнометрии с помощью оптического пучка, проходящего по тому же оптическому тракту, что и визуальный пучок автоколлимационного микроскопа, определяют дальность до вогнутой оптической сферической поверхности, затем устанавливают в центр кривизны вогнутой оптической сферической поверхности предмет и определяют дальность до этого предмета также методом оптической дальнометрии, с помощью оптического пучка, проходящего по тому же оптическому тракту, что и визуальный пучок автоколлимационного микроскопа, находят разницу между этими двумя дальностями, которая и будет радиусом кривизны вогнутой оптической сферической поверхности.

Документы, цитированные в отчете о поиске Патент 2013 года RU2491504C2

Афанасьев В.А
Оптические измерения
- М.: Высшая школа, 1981, с.52-56
Способ контроля радиуса кривизны сферических поверхностей оптических деталей 1987
  • Контиевский Юрий Петрович
  • Бакеркин Александр Владимирович
SU1460600A1
Устройство для измерения радиуса кривизны сферической поверхности оптической детали 1986
  • Бакеркин Александр Владимирович
SU1379615A1
Приспособление для удаления ватки с краевых ремешков делителя чесальной машины 1950
  • Ефимов Н.С.
  • Задоя А.Ф.
SU87793A1
CN 102168955 A, 31.08.2011.

RU 2 491 504 C2

Авторы

Ершов Александр Георгиевич

Даты

2013-08-27Публикация

2011-09-30Подача