СПОСОБ И УСТРОЙСТВО ДЛЯ ИЗГОТОВЛЕНИЯ ТРЕХМЕРНЫХ ОБЪЕКТОВ Российский патент 2013 года по МПК B22F3/105 

Описание патента на изобретение RU2496606C2

Область техники

Настоящее изобретение относится к способу и устройству для послойного изготовления трехмерных объектов с использованием порошкового материала, который может быть отвержден (превращен в твердое тело) посредством его облучения высокоэнергетическим лучом.

Уровень техники

Оборудование для послойного изготовления трехмерного объекта с использованием порошкового материала, который может быть отвержден или сплавлен посредством его облучения высокоэнергетическим лучом электромагнитного излучения или электронов, известно, например, из US 4863538, US 5647931 и SE 524467. Данное оборудование включает в себя, например, источник подачи порошка, средство для нанесения слоя порошка на вертикально регулируемую платформу или рабочую зону и средство для направления луча по рабочей зоне. Порошок спекается или расплавляется и отверждается по мере того, как луч перемещается по рабочей зоне.

При расплавлении или спекании порошка с использованием высокоэнергетического луча важно исключить превышение температуры испарения порошка, так как в противном случае порошок будет просто испаряться вместо формирования намеченного изделия (продукта). В US 2005/0186538 раскрыт способ, направленный на решение этой проблемы. В этом способе лазерный луч многократно направляют на одну и ту же целевую зону порошка во время фазы расплавления/спекания с тем, чтобы ступенчато повышать температуру порошка. Тем самым исключается слишком высокая температура порошка.

При использовании электронного луча вместо лазерного луча ситуация несколько отличается. Когда электронный луч попадает в порошок, вокруг целевой зоны электронного воздействия развивается распределение заряда. Желательно, этот заряд будет проходить через изготовленную часть получаемого изделия и/или порошковую подушку на землю. Если плотность распределения заряда превысит критический предел, то вокруг того положения, где излучается луч, будет создаваться электрическое поле, имеющее напряженность поля выше заданного уровня. Электрическое поле, имеющее напряженность электрического поля выше заданного уровня, будет обозначаться как Emax. Электрическое поле будет вызывать такое взаимное отталкивание порошковых частиц, что частицы покидают самый верхний поверхностный слой частиц и создают распределение частиц, «плавающих» над поверхностью. Плавающие частицы напоминают облако, расположенное над поверхностью. Когда электрическое поле имеет напряженность поля выше Emax, электрическое поле, т.е. облако частиц, будет негативно сказываться на разрешающей способности устройства. Это частично обусловлено тем фактом, что частицы в облаке частиц будут отклонять электронный луч. Когда электрическое поле имеет напряженность поля ниже Emax, электрическое поле, т.е. облако частиц, не будет оказывать существенного влияния на разрешающую способность устройства. Следовательно, желательной является напряженность поля ниже Emax.

Поскольку частицы заряжены, они будут стремиться к контакту заземления, и поэтому некоторые могут покидать облако и тогда будут загрязнять разные части устройства, расположенные внутри вакуумной камеры. Результатом такого критического электрического поля является то, что структура поверхности порошка будет нарушена. Применение способа по US 2005/0186538 в расплавляющем/спекающем порошок устройстве, снабженном электронным лучом, по всей вероятности должно давать неудовлетворительный результат, поскольку в этом способе не принимается никаких мер, чтобы избежать создания критического электрического поля, имеющего напряженность поля выше упомянутого заданного уровня.

Одно решение проблемы исключения разрядов состоит в том, чтобы вводить в порошок проводящий материал, такой как углерод, для повышения электропроводности порошка. Однако недостатки этого решения состоят в том, что процесс отверждения такой порошковой смеси может оказаться трудно регулируемым, и в том, что свойства сформированного изделия могут испытывать негативное влияние. Например, механическая прочность может снижаться.

Раскрытие изобретения

Целью настоящего изобретения является обеспечение способа и устройства для послойного изготовления трехмерных объектов из порошкового материала, причем эти способ и устройство обеспечивают регулируемое и надлежащее сплавление порошкового материала и хорошо приспособлены для электронного луча. Эта цель достигается с помощью способа и устройств, охарактеризованных в независимых пунктах формулы изобретения. Зависимые пункты формулы изобретения содержат предпочтительные варианты реализации, дополнительные усовершенствования и варианты изобретения.

Изобретение относится к способу изготовления трехмерных объектов слой за слоем (т.е. послойно) с использованием порошкового материала, который может быть отвержден посредством его облучения высокоэнергетическим лучом. Изобретение отличается тем, что этот способ содержит этап регулирования количества ионов, присутствующих в непосредственной близости от того положения, где высокоэнергетический луч облучает порошковый материал. Было показано, что при регулировании количества ионов, присутствующих в непосредственной близости от высокоэнергетического луча, тенденция к нарастанию облака снижается. Следовательно, высокоэнергетический луч, т.е. электронная пушка, может работать с более высокой выходной мощностью без создания электрического поля, превышающего упомянутый заданный уровень. Данный эффект достигается тем, что ионы поблизости от точки облучения высокоэнергетическим лучом снижают плотность заряда в упомянутой близости. Естественно, когда высокоэнергетический луч генерируется электронной пушкой, ионы должны быть положительными. Является предпочтительным, чтобы число ионов превышало уровень, необходимый для поддержания напряженности электрического поля ниже Emax. При этом нейтрализуется достаточное количество порошкового материала.

В первом варианте реализации изобретения количество ионов, присутствующих в непосредственной близости от того положения, где облучает высокоэнергетический луч, регулируют с использованием способа, содержащего этапы:

- введения вспомогательного газа в вакуумную камеру оборудования, и

- регулирования давления газа до заданного уровня давления,

причем упомянутый вспомогательный газ способен образовывать ионы при облучении высокоэнергетическим лучом.

Является предпочтительным, чтобы образованное число ионов превышало уровень, необходимый для поддержания напряженности электрического поля ниже Emax. При этом нейтрализуется достаточное количество порошкового материала.

Подходящим образом вакуумная камера перед введением вспомогательного газа обладает давлением менее 1×10-4 мбар. Вспомогательный газ повысит давление в вакуумной камере до значений в интервале между 1×10-1 мбар и 10-4 мбар. Предпочтительно, давление после введения вспомогательного газа составляет между 10-2 мбар и 10-3 мбар. Более высокое давление будет приводить к увеличению количества ионов, доступных на поверхности слоя порошка, и, следовательно, можно допускать большую мощность электронной пушки без создания облака. С другой стороны, высокое давление будет приводить к тому, что луч из электронной пушки будет в большей степени рассеиваться, тем самым приводя к снижению разрешающей способности в подлежащей изготовлению части. Было показано, что введение вспомогательного газа под давлением между 10-2 мбар и 10-3 мбар приводит к удовлетворительному балансу между этими двумя эффектами.

В одном варианте реализации изобретения используют инертный газ. Аргон особенно пригоден для использования в связи с изготовлением из титановых сплавов. Возможно также предусмотреть использование гелия. Вместе с хромокобальтовыми сплавами может быть подходящим образом использован азот.

Во втором варианте реализации изобретения количество ионов, присутствующих в непосредственной близости от того положения, которое облучает высокоэнергетический луч, регулируют с использованием способа, содержащего этап:

- введения ионов в вакуумную камеру оборудования.

При введении ионов в вакуумную камеру с использованием источника ионов, такого как распылительное устройство или плазменное устройство, можно регулировать число заряженных ионов в вакуумной камере. Следовательно, эффект рассеяния электронной пушки можно тем самым ослабить благодаря возможности работы при низком давлении, но при этом по-прежнему имея доступ к достаточному количеству заряженных ионов. Концентрацию ионов можно получать посредством регулирования количества ионов, вводимых в вакуумную камеру. Ионы предпочтительно нацеливают в направлении порошкового материала. В зависимости от заряда частиц в порошковой подушке, вводимые ионы являются либо отрицательно заряженными, либо положительно заряженными. В наиболее общем случае порошковая подушка является отрицательно заряженной, так что в этом случае будут применяться положительно заряженные ионы.

Подходящим образом число ионов, вводимых в вакуумную камеру, регулируют в зависимости от выходной мощности высокоэнергетического луча. Поскольку большая доля электронов, обеспечиваемых электронной пушкой, будет разряжаться через часть изготавливаемого объекта и/или порошковую подушку на землю, то компенсировать требуется только малую долю электронов, обеспечиваемых электронной пушкой. Поэтому предпочтительно поддерживать интенсивность введения ионов в вакуумную камеру выше уровня, необходимого для поддержания напряженности электрического поля ниже Emax.

Изобретение относится также к устройству для послойного изготовления трехмерных объектов с использованием порошкового материала, который может быть отвержден посредством его облучения высокоэнергетическим лучом, причем это устройство выполнено с возможностью работы по меньшей мере одним из способов с вышеописанными этапами.

Краткое описание чертежей

В нижеприведенном описании изобретения содержатся ссылки на следующие фигуры, на которых:

Фигура 1 показывает в схематичном виде пример известного устройства для изготовления трехмерного изделия;

Фигура 2 показывает в схематичном виде пример устройства для изготовления трехмерного изделия, причем в этом устройстве можно применить первый вариант реализации способа по изобретению;

Фигура 3 показывает в схематичном виде пример устройства для изготовления трехмерного изделия, причем в этом устройстве можно применить второй вариант реализации способа по изобретению; и

Фигура 4 показывает в схематичном виде пример поверхности порошкового материала с облаком заряженных частиц.

Вариант(ы) реализации изобретения

На фигуре 1 показан пример известного устройства 1 для изготовления трехмерного изделия. Устройство 1 содержит вертикально регулируемый рабочий стол 2, на котором следует формировать трехмерное изделие 3, один или более дозаторов 4 порошка, средство 28, выполненное с возможностью распределения тонкого слоя порошка на рабочем столе 2 для формирования порошковой подушки 5, излучающую пушку 6 в виде электронной пушки для доставки энергии в порошковую подушку 5 с тем, чтобы сплавлять части этой порошковой подушки 5, отклоняющие катушки 7 для направления по упомянутому рабочему столу 2 электронного луча, испускаемого излучающей пушкой 6, и блок 8 управления, выполненный с возможностью управления различными частями устройства 1. В ходе типичного рабочего цикла рабочий стол 2 опускают, на порошковую подушку 5 наносят новый слой порошка и сканируют электронным лучом по выбранным частям верхнего слоя 5' порошковой подушки 5. В принципе, данный цикл повторяют до тех пор, пока изделие не будет закончено. Специалист в данной области техники знаком как с общим функционированием, так и составом устройств для изготовления трехмерного изделия, относящихся к типу, показанному в общих чертах на фигуре 1. Устройство 1 в целом составляет вакуумную камеру, в которой низкое давление достигается с помощью вакуумного насоса (не показан). Давление в вакуумной камере предпочтительно выдерживается на уровне давления ниже 10-4 мбар.

В случае, когда применяют электронный луч, необходимо учитывать распределение заряда, которое создается в порошке по мере того, как электроны ударяют о порошковую подушку 5. Изобретение, по меньшей мере частично, основано на понимании того, что плотность распределения заряда зависит от следующих параметров: ток луча, скорость электронов (которая задается ускоряющим напряжение), скорость сканирования луча, порошковый материал и электропроводность порошка, т.е. в основном электропроводность между зернами порошка. Последняя, в свою очередь, является функцией нескольких параметров, таких как температура, степень спекания и размер зерен порошка/распределения размеров зерен порошка.

Следовательно, для данного порошка, т.е. порошка из определенного материала с определенным распределением размеров зерен, и для данного ускоряющего напряжения можно, изменяя ток луча (и, следовательно, мощность луча) и скорость сканирования луча, влиять на распределение заряда.

Изменяя эти параметры контролируемым образом, электропроводность порошка можно постепенно увеличивать путем повышения температуры порошка. Порошок, который имеет высокую температуру, приобретает значительно более высокую электропроводность, которая приводит к более низкой плотности распределения заряда, так как заряды могут быстро диффундировать по большой области. Данный эффект усиливается, если порошку дают слегка спечься в ходе процесса предварительного нагревания. Когда электропроводность становится достаточно высокой, порошок может быть сплавлен, т.е. расплавлен или полностью спечен, при произвольных значениях тока луча и скорости сканирования луча.

Функция общего вида для описания плотности заряда, которая развивается в порошке в ходе произвольной процедуры сканирования, будет довольно сложной функцией времени и положения луча, так как на плотность заряда, генерируемого вдоль одной сканируемой дорожки, будет влиять плотность заряда, генерируемого вдоль другой сканируемой дорожки, если эти дорожки не достаточно хорошо разделены в пространстве и во времени. Таким образом, следует учитывать эффекты суммирования между разными дорожками.

На фигуре 2 показан пример устройства 21 для изготовления трехмерного изделия, в котором можно применить первый вариант реализации способа по изобретению. Устройство 21 также содержит, кроме частей, показанных на фигуре 1, впуск 22 газа, через который вспомогательный газ может быть введен в вакуумную камеру устройства. Впуск газа регулируется управляемым клапаном 23, которым можно управлять посредством блока 8 управления. Управляемым клапаном 23 и, следовательно, давлением газа в вакуумной камере можно управлять по давлению в вакуумной камере. Это давление можно измерять датчиком 24 давления, соединенным с блоком 8 управления.

На фигуре 3 показан пример устройства 31 для изготовления трехмерного изделия, в котором можно применить второй вариант реализации способа по изобретению. Устройство 31 также содержит, кроме частей, показанных на фигуре 1, распылительное устройство 32, с помощью которого ионы можно вводить в вакуумную камеру устройства. Распылительным устройством 32 можно управлять посредством блока 8 управления. Газ, применяемый в распылительном устройстве 32 для создания ионов, предпочтительно является инертным газом типа аргона. Давление в вакуумной камере выдерживают на заданном уровне, предпочтительно, ниже 10-4 мбар. Давление в вакуумной камере можно измерять датчиком 34 давления, соединенным с блоком 8 управления.

На фигуре 4 показан верхний слой 5' порошковой подушки 5 из порошкового материала с облаком 41 заряженных частиц. Это облако сконцентрировано около того положения, где электронный луч 42 облучает порошковый материал. При более сильном электрическом поле вокруг точки облучения возникает большее облако. Поэтому целью изобретения является ограничение размера, т.е. высоты, этого облака. Следовательно, число ионов, вводимых в вакуумную камеру или образующихся в вакуумной камере, должно быть выше заданного уровня для того, чтобы нейтрализовать достаточное количество зарядов в облаке. Заданный уровень следует выбирать таким, чтобы он поддерживал напряженность электрического поля ниже Emax. При этом нейтрализуется достаточное количество порошкового материала.

Изобретение нельзя считать ограниченным вышеописанными вариантами реализации, и в пределах объема нижеследующей формулы изобретения возможен ряд дополнительных вариантов и модификаций.

Похожие патенты RU2496606C2

название год авторы номер документа
СПОСОБ И УСТРОЙСТВО ДЛЯ УВЕЛИЧЕНИЯ РАЗРЕШАЮЩЕЙ СПОСОБНОСТИ В АДДИТИВНО ВЫПОЛНЕННЫХ ТРЕХМЕРНЫХ ИЗДЕЛИЯХ 2012
  • Аккелид Ульф
RU2588207C2
СПОСОБ И УСТРОЙСТВО ДЛЯ ИЗГОТОВЛЕНИЯ ТРЕХМЕРНЫХ ОБЪЕКТОВ 2006
  • Ларссон Морган
  • Снис Андерс
RU2401179C1
СПОСОБ И УСТРОЙСТВО ДЛЯ ГЕНЕРИРОВАНИЯ ЭЛЕКТРОННЫХ ПУЧКОВ 2013
  • Свенссон Маттиас
  • Люнгблад Ульрик
RU2637509C2
ИОННО-ПЛАЗМЕННЫЕ ИЗЛУЧАТЕЛИ ЭЛЕКТРОНОВ ДЛЯ ПЛАВИЛЬНОЙ ПЕЧИ 2010
  • Форбз Джоунс,Робин,М.
RU2544328C2
СПОСОБЫ И УСТРОЙСТВО ДЛЯ ПОЛУЧЕНИЯ ПРОДУКТОВ ИЗ РАСПЫЛЕННЫХ МЕТАЛЛОВ И СПЛАВОВ 2012
  • Кеннеди, Ричард Л.
  • Форбс-Джонс, Робин М.
RU2608857C2
СПОСОБ И УСТРОЙСТВО НАНЕСЕНИЯ ПОКРЫТИЙ МЕТОДОМ ПЛАЗМОХИМИЧЕСКОГО ОСАЖДЕНИЯ 2001
  • Ремнев Г.Е.
  • Исаков И.Ф.
  • Тарбоков В.А.
  • Макеев В.А.
RU2205893C2
СПОСОБ УПРАВЛЕНИЯ ФОКУСИРОВКИ ЭЛЕКТРОННОГО ЛУЧА ЭЛЕКТРОННОЙ ПУШКИ ТИПА ПИРСА И УПРАВЛЯЮЩЕЕ УСТРОЙСТВО ДЛЯ НЕЕ 2007
  • Иидзима Эйити
  • Шэнь Гуо Хуа
  • Сатаке Тохру
RU2449409C2
ЭЛЕКТРОННО-ДИНАМИЧЕСКИЙ СНАРЯД, СПОСОБ ЕГО ФОРМИРОВАНИЯ, СПОСОБЫ ЕГО РАЗГОНА И ПУШКА ДЛЯ СТРЕЛЬБЫ ЭЛЕКТРОННО-ДИНАМИЧЕСКИМИ СНАРЯДАМИ 2004
  • Никитин Владимир Степанович
RU2279624C2
ИЗГОТОВЛЕНИЕ ИМПЕЛЛЕРА ТУРБОМАШИНЫ 2013
  • Тоцци, Пьерлуиджи
  • Джованнетти, Лакопо
  • Массини, Андреа
RU2630139C2
СПОСОБ ПОСЛОЙНОГО ЭЛЕКТРОННО-ЛУЧЕВОГО СПЕКАНИЯ ИЗДЕЛИЙ ИЗ КЕРАМИЧЕСКОГО ПОРОШКА 2015
  • Бакеев Илья Юрьевич
  • Бурачевский Юрий Александрович
  • Бурдовицин Виктор Алексеевич
  • Зенин Алексей Александрович
  • Климов Александр Сергеевич
  • Окс Ефим Михайлович
RU2627796C2

Иллюстрации к изобретению RU 2 496 606 C2

Реферат патента 2013 года СПОСОБ И УСТРОЙСТВО ДЛЯ ИЗГОТОВЛЕНИЯ ТРЕХМЕРНЫХ ОБЪЕКТОВ

Изобретение относится к порошковой металлургии, в частности к способу послойного изготовления трехмерных объектов из порошкового материала. Порошковый материал отверждают посредством его облучения высокоэнергетическим электронным лучом, при этом осуществляют регулирование количества ионов, присутствующих в непосредственной близости от того положения, где электронный луч облучает порошковый материал. Регулирование проводят таким образом, чтобы обеспечить нейтрализацию облака заряженных частиц порошкового материала, образующегося вокруг точки облучения. Ионы могут быть введены в вакуумную камеру или образованы при облучении высокоэнергетическим электронным лучом вспомогательного газа, вводимого в вакуумную камеру. Обеспечивается регулируемое сплавление порошкового материала и повышение свойств конечного изделия. 3 н. и 17 з.п. ф-лы, 4 ил.

Формула изобретения RU 2 496 606 C2

1. Способ послойного изготовления трехмерных объектов (3) с использованием порошкового материала (5), который может быть отвержден посредством его облучения высокоэнергетическим электронным лучом, отличающийся тем, что способ содержит этап:
- регулирования количества ионов, присутствующих в непосредственной близости от того положения, где высокоэнергетический электронный луч облучает порошковый материал, таким образом, чтобы обеспечить нейтрализацию облака заряженных частиц порошкового материала, образующегося вокруг точки облучения.

2. Способ послойного изготовления трехмерных объектов (3) с использованием порошкового материала (5), который может быть отвержден посредством его облучения высокоэнергетическим электронным лучом, отличающийся тем, что способ содержит этапы:
- введения вспомогательного газа в вакуумную камеру оборудования, и
- регулирования давления этого газа до заданного уровня давления, причем упомянутый вспомогательный газ способен образовывать заданное число ионов при облучении высокоэнергетическим электронным лучом с тем, чтобы обеспечить нейтрализацию облака заряженных частиц порошкового материала, образующегося вокруг точки облучения.

3. Способ по п.2, отличающийся тем, что заданное число ионов превышает уровень, необходимый для поддержания напряженности электрического поля ниже Emax.

4. Способ по п.2, отличающийся тем, что перед введением вспомогательного газа в вакуумной камере устанавливают давление менее 1×10-4 мбар.

5. Способ по п.2, отличающийся тем, что давление в вакуумной камере составляет в интервале между 1×10-1 мбар и 1×10-4 мбар после введения вспомогательного газа.

6. Способ по п.2, отличающийся тем, что вспомогательный газ является инертным газом.

7. Способ по п.6, отличающийся тем, что инертный газ является аргоном.

8. Способ по п.6, отличающийся тем, что инертный газ является гелием.

9. Способ по п.2, отличающийся тем, что давление в вакуумной камере регулируют в зависимости от выходной мощности высокоэнергетического электронного луча.

10. Способ послойного изготовления трехмерных объектов (3) с использованием порошкового материала (5), который может быть отвержден посредством его облучения высокоэнергетическим электронным лучом,
отличающийся тем, что
способ содержит этап:
- введения ионов в вакуумную камеру оборудования, причем интенсивность введения ионов в вакуумную камеру превышает уровень, необходимый для поддержания напряженности электрического поля ниже Emax.

11. Способ по п.10, отличающийся тем, что используют источник ионов для введения ионов в вакуумную камеру.

12. Способ по п.10, отличающийся тем, что источник ионов является распылительным источником ионов.

13. Способ по п.10, отличающийся тем, что источник ионов является плазменным источником ионов.

14. Способ по п.10, отличающийся тем, что вводимые ионы являются положительно заряженными.

15. Способ по п.10, отличающийся тем, что перед введением ионов в вакуумной камере устанавливают давление менее 1×10-4 мбар.

16. Способ по п.10, отличающийся тем, что ионы получают с использованием инертного газа.

17. Способ по п.16, отличающийся тем, что инертный газ является аргоном.

18. Способ по п.16, отличающийся тем, что инертный газ является гелием.

19. Способ по п.10, отличающийся тем, что количество ионов, вводимых в вакуумную камеру, регулируют в зависимости от выходной мощности высокоэнергетического электронного луча.

20. Способ по п.10, отличающийся тем, что ионы, вводимые в вакуумную камеру, направляют на порошковый материал.

Документы, цитированные в отчете о поиске Патент 2013 года RU2496606C2

US 5182170 А, 26.01.1993
СПОСОБ ИЗГОТОВЛЕНИЯ ТРЕХМЕРНЫХ ИЗДЕЛИЙ ИЗ ПОРОШКОВЫХ МАТЕРИАЛОВ 1992
  • Толочко Николай Константинович[By]
  • Дука Сергей Николаевич[By]
  • Соболенко Николай Васильевич[By]
  • Ядройцев Игорь Анатольевич[By]
  • Горюшкин Виктор Иванович[By]
  • Дубовец Владимир Сергеевич[By]
  • Свирский Дмитрий Николаевич[By]
RU2080963C1
СПОСОБ И УСТАНОВКА ДЛЯ ИЗГОТОВЛЕНИЯ ОБЪЕМНЫХ МЕТАЛЛИЧЕСКИХ ИЗДЕЛИЙ 2003
  • Хошневис Бехрок
RU2288073C2
US 7168935 B1, 24.10.2000.

RU 2 496 606 C2

Авторы

Аккелид Ульф

Даты

2013-10-27Публикация

2008-05-14Подача