Изобретение относится к области химии полимеров, биохимии и медицины, а именно к способу получения полиакриламидного гидрогеля, который благодаря высокой пористости применяется в качестве разделяющей среды в жидкостной хроматографии, в качестве носителя иммобилизованных биологически активных веществ, а также для изготовления эндопротезов мягких тканей.
Известен способ получения полиакриламидного гидрогеля путем γ-облучения дозой 0,5-5,0 Мрад порошкообразного полиакриламида с последующим добавлением воды и механической гомогенизацией полученной смеси [патент РФ 2114867, C08F 120/56, 1998].
Недостатком этого способа является неоднородная структура получаемого гидрогеля, обусловленная наличием пор разного размера. Все поры гидрогеля доступны для молекул инсулина с молекулярной массой (ММ) 6000 и молекул сывороточного альбумина с ММ 67000, 70-80% пор доступны для молекул алкогольдегидрогеназы с ММ 141000 и 40-50% пор доступны для молекул фибриногена с ММ 340000.
Наиболее близким по технической сущности и достигаемым результатам является способ получения полиакриламидного гидрогеля путем полимеризации водного раствора, содержащего 7-15% мас. акриламида и 0,5-1,5% мас. N,N′-метиленбисакриламида, под действием окислительно восстановительной системы: персульфат аммония и N,N,N′,N′-тетраметилэтилендиамин [Методы исследования в иммунологии, под ред. И.Лефковитса и Б.Перниса, Мир, Москва, с.99-107].
Недостатком этого способа является структурная неоднородность получаемого гидрогеля, обусловленная широким разбросом пор по размерам. В зависимости от количества акриламида и N,N′-метиленбисакриламида, получаемые гидрогели в набухшем состоянии содержат 80-95% воды, все поры гидрогелей доступны для молекул инсулина, 90-95% пор доступны для молекул овомукоида с ММ 31000, 80-90% пор доступны для молекул сывороточного альбумина, 50-60% пор доступны для молекул алкогольдегидрогеназы и 30-40% пор доступны для молекул фибриногена.
Задачей изобретения является повышение структурной однородности гидрогеля.
Техническим результатом, достигаемым при использовании изобретения, является повышение структурной однородности гидрогеля.
Технический результат достигается тем, что в способе получения полиакриламидного гидрогеля путем полимеризации водного раствора, содержащего 7-15% мас. акриламида и 0,5-1,5% мас. N,N′-метиленбисакриламида, под действием окислительно-восстановительной системы: персульфат аммония и N,N,N′,N′-тетраметилэтилендиамин, полимеризацию проводят в присутствии 0,01-0,12% мас. меркаптоуксусной кислоты.
Меркаптоуксусная кислота является передатчиком цепи при радикальной полимеризации и при гомополимеризации ненасыщенных мономеров обеспечивает снижение их молекулярной массы без изменения скорости полимеризации. В реакциях сополимеризации с образованием пористых гидрогелей это соединение не использовалось.
Пример 1
При комнатной температуре и перемешивании в 89 мл дистиллированной воды растворяют 10 г акриламида (АА) и 0,5 г N,N-метиленбисакриламида (БИС). После полного растворения в раствор добавляют 0,08 г персульфата аммония (ПА) и 0,04 г меркаптоуксусной кислоты (МУК). Раствор вакуумируют при 10-12 мм рт.ст., к нему добавляют 0,08 мл N,N,N′,N′-тетраметилэтилендиамина (ТЕМЕД). Раствор вакуумируют при 10-12 мм рт.ст. и выдерживают при комнатной температуре (18-21°С) в течение 5 часов. Об окончании реакции полимеризации свидетельствует образование бесцветного геля. Полученный гель извлекают из сосуда, измельчают продавливанием через сито с диаметром пор 1 мм и промывают 10-ти кратным избытком дистиллированной воды. Содержание воды в гидрогеле оценивают взвешиванием набухшего в воде гидрогеля и лиофильно высушенного гидрогеля. Для оценки содержания в гидрогеле пор различного размера к 2 мл геля добавляют 4 мл раствора белка и смесь выдерживают 48 часов при 4°С. Концентрацию исходного раствора белка и раствора белка после контакта с гидрогелем измеряют спектрофотометрически при 280 нм, используя предварительно построенную калибровочную зависимость. Учитывая соотношения объемов используемых фаз, рассчитывают количество пор, доступных для каждого белка, принимая за 100% количество пор, доступных для воды. Свойства гидрогеля приведены в таблице 2.
Примеры 2-4
Процесс проводят по примеру 1, используя различные количества компонентов. Составы реакционной смеси приведены в таблице 2
Пример 5 (контрольный)
Процесс проводят по примеру 1 без использования меркаптоуксусной кислоты.
Видно, что использование меркаптоуксусной кислоты в процессе радикальной полимеризации акриламида N,N′-метиленбисакриламида приводит к получению более однородных мелкопористых гидрогелей с низким содержанием пор большого размера. Так, если в гидрогеле, полученном по способу-прототипу, все поры имеют размеры, обеспечивающие доступность для молекул воды и молекул белка с ММ 6000, а из них 38% доступны для молекул белка с ММ 340000, то в гидрогелях, полученных по предлагаемому способу, количество пор, доступных для молекул белка с ММ 340000, сокращено в 2,8-5,4 раза.
Предельные количества вводимой в реакцию меркаптоуксусной кислоты (0,01-0,12% мас.) определяются следующим. При концентрации ниже 0,01% мас. эффект изменения структуры гидрогеля практически отсутствует, а при концентрации выше 0,12% мас. гидрогель не образуется.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ПОЛУЧЕНИЯ ПОЛИАКРИЛАМИДНОГО ГИДРОГЕЛЯ | 2012 |
|
RU2493173C1 |
СПОСОБ ПОЛУЧЕНИЯ БИОСПЕЦИФИЧЕСКОГО ГИДРОГЕЛЕВОГО СОРБЕНТА ДЛЯ ВЫДЕЛЕНИЯ ПРОТЕИНАЗ | 2012 |
|
RU2484475C1 |
СПОСОБ ПОЛУЧЕНИЯ БИОСПЕЦИФИЧЕСКОГО ГИДРОГЕЛЕВОГО СОРБЕНТА ДЛЯ ВЫДЕЛЕНИЯ ПРОТЕИНАЗ | 2014 |
|
RU2567623C2 |
СПОСОБ ПОЛУЧЕНИЯ ГЛЮКОЗОЧУВСТВИТЕЛЬНЫХ ПОЛИМЕРНЫХ ГИДРОГЕЛЕЙ | 2017 |
|
RU2652126C1 |
СПОСОБ ПОЛУЧЕНИЯ ИНСУЛИНСОДЕРЖАЩЕЙ КОМПОЗИЦИИ | 2020 |
|
RU2752509C1 |
СПОСОБ ПОЛУЧЕНИЯ БИОСПЕЦИФИЧЕСКОГО ГЕМОСОРБЕНТА ДЛЯ ВЫДЕЛЕНИЯ ПРОТЕИНАЗ | 2018 |
|
RU2681883C1 |
Способ получения полиакриламидного гидрогеля | 2020 |
|
RU2749268C1 |
СПОСОБ ПОЛУЧЕНИЯ ПОЛИМЕРНОГО ГИДРОГЕЛЯ | 2015 |
|
RU2612703C1 |
СПОСОБ ПОЛУЧЕНИЯ ПОЛИМЕРНЫХ ТЕРМОЧУВСТВИТЕЛЬНЫХ ГИДРОГЕЛЕЙ | 1992 |
|
RU2071965C1 |
Полимерный гидрогель для обнаружения фосфорорганических соединений в растворе | 1989 |
|
SU1705318A1 |
Настоящее изобретение относится к способу получения полиакриламидного гидрогеля, который применяется в качестве разделяющей среды в жидкостной хроматографии, в качестве носителя иммобилизованных биологически активных веществ, а также для изготовления эндопротезов мягких тканей. Данный способ осуществляют путем полимеризации водного раствора, содержащего 7-15% мас. акриламида и 0,5-1,5% мас. N,N′-метиленбисакриламида, под действием окислительно-восстановительной системы: персульфат аммония и N,N,N′,N′-тетраметилэтилендиамин, причем полимеризацию проводят в присутствии 0,01-0,12% мас. меркаптоуксусной кислоты. Технический результат - повышение структурной однородности гидрогеля. 2 табл., 5 пр.
Способ получения полиакриламидного гидрогеля путем полимеризации водного раствора, содержащего 7-15 мас.% акриламида и 0,5-1,5 мас.% N,N′-метиленбисакриламида, под действием окислительно-восстановительной системы: персульфат аммония и N,N,N′,N′-тетраметилэтилендиамин, отличающийся тем, что полимеризацию проводят в присутствии 0,01-0,12 мас.% меркаптоуксусной кислоты.
Методы исследований в иммунологии | |||
/ Под ред | |||
Лефковитса И., Перниса Б | |||
изд | |||
"МИР", 1981, с.99-107 | |||
СПОСОБ ПОЛУЧЕНИЯ ПОЛИМЕРНЫХ ТЕРМОЧУВСТВИТЕЛЬНЫХ ГИДРОГЕЛЕЙ | 1992 |
|
RU2071965C1 |
СПОСОБ ПОЛУЧЕНИЯ МЯГКОЙ КОНТАКТНОЙ ЛИНЗЫ | 1995 |
|
RU2104675C1 |
СПОСОБ ПОЛУЧЕНИЯ ПОЛИМЕРНОГО ГИДРОГЕЛЯ | 1998 |
|
RU2122438C1 |
ПОЛИФУНКЦИОНАЛЬНЫЙ БИОСОВМЕСТИМЫЙ ГИДРОГЕЛЬ И СПОСОБ ЕГО ПОЛУЧЕНИЯ | 2001 |
|
RU2205034C1 |
Швартовное устройство | 1987 |
|
SU1418188A1 |
Авторы
Даты
2013-11-20—Публикация
2012-03-22—Подача