РЕАКТОР ДЛЯ ОЧИСТКИ ИЛИ ГИДРООЧИСТКИ ЖИДКОЙ НАГРУЗКИ, НАПРИМЕР ДЛЯ КАТАЛИТИЧЕСКОЙ ОЧИСТКИ ДИСТИЛЛЯТОВ СЫРОЙ ТЯЖЕЛОЙ НЕФТИ Российский патент 2013 года по МПК B01D3/00 

Описание патента на изобретение RU2500451C2

Настоящее изобретение относится к реактору, содержащему устройство для распределения по меньшей мере одной газовой фазы и по меньшей мере одной жидкой фазы, циркулирующих в упомянутом реакторе в восходящем прямоточном режиме.

В частности, оно относится к реактору, снабженному подобным устройством и помещенному на входе реакционной зоны или зоны контакта газ/жидкость, которая может состоять из слоя твердых частиц в виде наполнителя, возможно, каталитических.

Оно в особенности относится к реактору для очистки или гидроочистки жидкой нагрузки, например, для каталитической очистки дистиллятов сырой тяжелой нефти.

Широко известно, что для типа реакторов, снабженных неподвижным слоем катализатора, является необходимым как можно более равномерное распределение не только газовой, но и жидкой фазы.

Также необходимо обеспечить как можно более равномерное и как можно более однородное распределение упомянутых двух фаз по всей длине поперечного сечения упомянутого реактора с целью оптимизации контакта газ/жидкость в реакторе и обеспечения практически идентичных режимов работы различных зон упомянутого реактора.

Как известно из документа US 3441498, подобное распределение может быть достигнуто при помощи распределительной тарелки, оснащенной вертикальными патрубками и отверстиями, предназначенными для достижения практически равномерного распределения газовой фазы и жидкой фазы по всему сечению реактора, чаще всего имеющего цилиндрическую форму.

Подобный тип распределительной тарелки, таким образом, позволяет распределять газовую фазу через отверстия тарелки, а жидкую фазу - через патрубки.

Кроме того, в патенте US 6123323 описано распределительное устройство, применяемое в реакторе, питаемом восходящим потоком смеси жидкости и газа.

Упомянутое устройство состоит из распределительной тарелки, занимающей все или часть местного сечения реактора, ограничивающее объем, в котором происходит разделение газа и жидкости, или его часть. Газ проходит сквозь отверстия, распределенные по всему сечению тарелки. Жидкость отдельно от газа течет сквозь вертикальные патрубки, пересекающие тарелку и продолжающиеся под поверхностью раздела жидкость/газ, или сквозь участки сечения реактора, не закрытые тарелкой.

Подобный реактор, питание которого газом и жидкостью осуществляется по трубопроводу, находящемуся на дне емкости, интересен с технической точки зрения, однако обладает существенными недостатками.

В самом деле, режим работы подобного реактора не является оптимальным, так как газ плохо перемешивается по поперечному сечению реактора; обычно газ поднимается по центру поперечного сечения в виде столба. Это искажает поверхность раздела газ-жидкость под распределительной тарелкой и влечет за собой неравномерное распределение газа под тарелкой.

Кроме того, возможно проникновение газа внутрь патрубков, что является нежелательным. Следствием наличия столба газа является неравномерное распределение газа; в центральной зоне тарелки будет присутствовать больше газа.

Помимо упомянутого выше, отделение газа создает существенные искажения, способные вызывать пульсации течения и местные нарушения равномерности распределения газа.

Настоящее изобретение предназначено для устранения упомянутых выше недостатков путем применения реактора со слоем катализатора, содержащего распределительную тарелку, служащую для достижения равномерного распределения газовой фазы по всему сечению реактора и не влияющую на распределение жидкой фазы даже в случае искажения поверхности раздела газ-жидкость.

В связи с упомянутой целью в настоящем изобретении предложен реактор для очистки или гидроочистки жидкой нагрузки, содержащий по меньшей мере один слой насадки, по существу жидкую фазу и по существу газовую фазу, находящиеся на дне реактора и разделенные поверхностью раздела, и распределительную тарелку, снабженную по меньшей мере одним основным патрубком, обеспечивающим циркуляцию жидкой фазы по направлению к слою, и по меньшей мере одним каналом, служащим для подачи газовой фазы в упомянутый слой, отличающийся тем, что в тарелке также имеется по меньшей мере один комбинированный патрубок, предназначенный для циркуляции жидкой фазы по направлению к слою или для подачи газовой фазы в упомянутый слой.

Комбинированный патрубок может иметь высоту, меньшую высоты основного патрубка и большую высоты канала.

Комбинированный патрубок может иметь поперечное сечение потока, меньшее поперечного сечения потока основного патрубка.

Комбинированный патрубок может представлять собой трубку, открытую с обоих концов; его проходное сечение потока может представлять собой диаметральное сечение упомянутой трубки.

Комбинированный патрубок может представлять собой трубку, открытую с обоих концов; его проходное сечение потока может представлять собой диаметральное сечение упомянутого комбинированного патрубка, содержащее сужение.

Сужение может представлять собой шайбу с отверстием, расположенную на одном из концов комбинированного патрубка.

Комбинированный патрубок может представлять собой трубку, закрытую с нижнего конца; проходное сечение подобного патрубка может представлять собой по меньшей мере одно отверстие, находящееся в боковой стенке упомянутого патрубка.

Основной патрубок может быть расположен соосно в отверстии, имеющемся в упомянутой тарелке и имеющем диаметральный размер, превышающий размер упомянутого патрубка.

Комбинированный патрубок может быть размещен между основным патрубком и отверстием соосно с ними.

Другие признаки и преимущества настоящего изобретения являются понятными при прочтении следующего далее описания, приведенного исключительно в иллюстративных и не в ограничительных целях; к нему прилагаются:

- Фиг.1, на которой в виде продольного разреза показана схема участка реактора по изобретению, содержащего распределительную тарелку;

- Фиг.2, на которой в увеличенном масштабе показан местный вид варианта осуществления реактора по изобретению;

- Фиг.3, на которой в увеличенном масштабе показан еще один местный вид другого варианта осуществления реактора по изобретению;

- Фиг.3, на которой в увеличенном масштабе показан еще один местный вид третьего варианта осуществления реактора по изобретению.

На Фиг.1 показан закрытый реактор 10, предпочтительно имеющий форму вертикальной удлиненной трубы и в общем случае содержащий в верхней части средства подачи продуктов (не показаны), обеспечивающие возможность получения по меньшей мере одного слоя наполнителя 12.

Под слоем наполнителя понимают совокупность твердых частиц, имеющих форму зерна размером порядка нескольких миллиметров и предпочтительно обладающих каталитической активностью, обеспечивающей возможность получения каталитического слоя, состоящего как из свежеприготовленного, так и из регенерированного катализатора.

Кроме того, подразумевается, что термин "реактор", использованный выше, охватывает как емкости, так и колонны.

Упомянутый реактор в области дна 14, предпочтительно в средней зоне дна, содержит трубопровод питания 16 рабочей смесью 18 газовой фазы и жидкой фазы (или нагрузкой).

Газовая фаза предпочтительно содержит смесь, в состав которой входит чистый водород, либо смесь, в состав которой входят чистый водород, а также остаточный водород и парообразные углеводороды; жидкая фаза преимущественно содержит углеводороды.

Рабочая смесь может содержать другие фазы, в том числе воду в смеси с воздухом или кислородом либо углеводород(ы) в смеси с воздухом или кислородом.

Слой наполнителя в нижней части упомянутого реактора ограничен поперечной перфорированной тарелкой 20, расположенной на расстоянии от дна 14 реактора и занимающей пространство вплоть до боковой стенки 22 реактора; роль тарелки будет объяснена в продолжении описания.

Широко известно, что подобный реактор обеспечивает распределение и смешение потоков газа и жидкости в подобном реакторе при его работе в режиме восходящего потока. Для проведения требуемой каталитической реакции, таким образом, необходимо обеспечение контакта газ/жидкость/твердая фаза во время реакции. Для этого катализатор, находящийся в слое наполнителя, поддерживается в реакторе в неподвижном состоянии или приводится потоком газ/жидкость в состояние кипящего слоя.

Как лучше всего видно из Фиг.1, распределительная тарелка 20, или тарелка распределения, ограничивает слой наполнителя 12 и находится ниже по направлению потока относительно трубопровода подачи 16 и дна 14 реактора.

Упомянутая тарелка состоит из плоской пластины 24, занимающей все сечение реактора вплоть до его боковой стенки 22.

Данная пластина содержит множество проходящих сквозь нее отверстий 26, 28, 30. В отверстиях 26 впритык к ним размещены вертикальные полые трубки 32, открытые с обоих концов, далее в настоящем описании обозначенные термином "основные патрубки" и предназначенные для протекания по ним преимущественно жидкой фазы L рабочей смеси. Отверстия 28 предназначены для размещения впритык к ним полых вертикальных трубок 34, также открытых с обоих концов и обозначенных как "комбинированные патрубки". По упомянутым патрубкам протекает либо преимущественно жидкая фаза L рабочей смеси, либо преимущественно газовая фаза G рабочей смеси. Отверстия 30 пластины являются свободными, предпочтительно не содержат полых трубок и образуют каналы, сквозь которые проходит преимущественно газовая фаза G смеси.

Таким образом, распределительная тарелка состоит из совокупности основных патрубков 32, комбинированных патрубков 34 и каналов 30.

Подобная тарелка, таким образом, обеспечивает перемещение потоков газа и жидкости со дна реактора к слою наполнителя.

Высота Н по оси основных патрубков 32 превышает высоту Н' по оси комбинированных патрубков 34, которая в свою очередь превышает высоту каналов 30, в данном случае совпадающую с толщиной Е пластины 24. Высоты Н и Н' отсчитывают от нижней поверхности пластины 24 до нижнего открытого конца соответственно основного патрубка и комбинированного патрубка, в который поступает поток.

Площадь поперечного проходного сечения S1 основных патрубков 32 в радиальном направлении предпочтительно превышает площадь поперечного проходного сечения S2 комбинированных патрубков 34 и проходного сечения S3 каналов 30. Площади сечений S2 и S3 предпочтительно равны между собой, однако они могут быть различными, при этом не превышая площадь сечения S1.

В данном случае сечения S1-S3 соответствуют открытым сечениям, сквозь которые по направлению к слою 12 циркулирует поток (газ или жидкость). В качестве сечений S1 и S2 рассматриваются внутренние диаметральные сечения трубок, образующих основные патрубки 32 и комбинированные патрубки 34; сечение S3 соответствует диаметральному сечению каналов 30.

Подразумевается, что каналы, патрубки и отверстия, в которые вставлены упомянутые патрубки, могут иметь любые геометрические формы сечения, одинаковые или различающиеся между собой, в том числе круглую, эллиптическую или любую другую форму.

Сходным образом количество и размещение патрубков 32, 34 и каналов 30 на пластине 24 и их размер выбирают с применением любых способов, известных специалисту в данной области техники, в зависимости от требуемых минимального и максимального рабочих значений расхода газа.

Следует уточнить, что при любом интервале рабочих значений расхода газа упомянутые характеристики должны обеспечить образование облака газа 36 под тарелкой 20 и поверхности 38 раздела жидкость/газ, расположенной над нижними концами основных патрубков 32.

Предпочтительно, чтобы, как в качестве примера показано на Фиг.1, по основным патрубкам 32 протекала жидкая фаза L смеси, а по комбинированным патрубкам, а также по каналам 30 - газовая фаза G. Отсюда следует, что нижние концы основных патрубков 32 являются погруженными в рабочую смесь 18, содержащуюся на дне 14 реактора, и что верхние концы упомянутых патрубков сообщаются со слоем наполнителя 12.

Сходным образом нижние концы комбинированных патрубков 34 находятся в облаке газа 36, тогда как их верхние концы сообщаются со слоем наполнителя 12.

Каналы 30 обеспечивают сообщение облака газа 36 со слоем наполнителя 12.

Предпочтительной является известная возможность того, чтобы между тарелкой 20 и сеткой, поддерживающей слой наполнителя, было предусмотрено свободное пространство.

Это позволяет уменьшить потери напора на тарелке в случае циркуляции жидкой и/или газовой фазы при больших скоростях.

Термины "верхний(верхние)" и "нижний(нижние)", использованные в настоящем описании, следует рассматривать в соответствии со схемой реактора, показанной на Фиг.1.

При работе подобного реактора рабочая смесь подается ко дну 14 реактора по трубопроводу 16. По мере подъема смеси к распределительной тарелке 20 содержащаяся в ней газовая фаза отделяется от смеси. Отделившаяся газовая фаза поступает под тарелку 20 с образованием облака газа 36 и поверхности 38 раздела газ/жидкость между упомянутым облаком газа и свободной от газа жидкой фазой рабочей смеси.

Подразумевается, что в соответствии с упомянутым выше облако газа 36 образуется под влиянием потерь напора на различных патрубках и каналах, количество, размеры и конструкции которых определяются так, чтобы поверхность 38 в лучшем случае находилась над нижними концами основных патрубков 32 и под нижними концами комбинированных патрубков, а в худшем случае - над нижними концами комбинированных патрубков, не достигая нижней поверхности тарелки 20.

Так, в конструкции, показанной на Фиг.1, не содержащая газа жидкая фаза L протекает сквозь основные патрубки 32 и поступает в слой 12; отделившаяся газовая фаза G, находящаяся в облаке 36, одновременно циркулирует по комбинированным патрубкам 34 и каналам 30 и также поступает в слой 12.

Упомянутые жидкая и газовая фазы, предпочтительно равномерно распределенные по всей площади тарелки 20, проходят сквозь слой в восходящем потоке с целью осуществления требуемой химической реакции и извлекаются из слоя любыми средствами, известными специалисту в данной области техники.

Естественно, что при конструкции реактора, согласно которой поверхность 38 расположена над нижними концами комбинированных патрубков 34, газовая фаза в облаке 36 проходит только по каналам 30, тогда как свободная от газа жидкая фаза одновременно протекает сквозь основные патрубки 32 и комбинированные патрубки 34 и поступает в слой 12.

Таким образом, вследствие наличия двух видов патрубков упомянутая тарелка обеспечивает большую гибкость используемых значений расхода газа и жидкости.

Кроме того, вследствие применения патрубков небольшой высоты подобная тарелка позволяет соблюсти требование компактности реактора.

Кроме того, подобный реактор делает возможным применение большого количества путей циркуляции газа, в частности, при повышении его расхода, при этом коалесценции газа не происходит.

Вариант осуществления, показанный на Фиг.2, отличается от Фиг.1 тем, что комбинированные патрубки 34' имеют поперечное сечение, идентичное сечению основных патрубков, и поперечное проходное сечение S2, меньшее поперечного проходного сечения S1 основных патрубков 32.

Меньший размер проходного сечения реализуется при помощи сужения 40, имеющегося в комбинированных патрубках 34'. Упомянутое сужение сечения предпочтительно образуется при помощи шайбы, предпочтительно с отверстием по центру, внешний диаметр которой совпадает с внутренним диаметром трубки, образующей патрубок, и внутренний диаметр которой позволяет определить проходное сечение S2.

Упомянутое сужение предпочтительно расположено на том или ином конце комбинированных патрубков, однако оно также может быть размещено в любом месте между двумя концами упомянутых патрубков.

В варианте осуществления, показанном на Фиг.3, нижние концы комбинированных патрубков 34", направленные ко дну реактора, являются закрытыми, тогда как верхние концы сохраняют сообщение со слоем наполнителя 12. Для обеспечения сообщения облака газа 36 со слоем 12 в боковой стенке комбинированных патрубков имеется по меньшей мере одно отверстие 42. Упомянутое отверстие, в данном случае являющееся круглым, обладает проходным сечением S2, размер которого соответствует размеру того же сечения на Фиг.1 или 2.

Сквозь данное отверстие, нижняя точка которого вместе с нижней поверхностью пластины 24 определяет высоту Н' данного патрубка, из облака 36 поступает газовая фаза, затем проходящая по комбинированным патрубкам 34 и поступающая в слой 12.

Естественно, что может быть предусмотрено множество отверстий 42, размещенных как по окружности рядом друг с другом, так и по оси одно над другим, либо обоими упомянутыми способами.

Кроме того, отверстие может иметь форму, отличную от круглой, например, форму щели.

В варианте осуществления, показанном на Фиг.4, в пластине 24 имеются отверстия 44, предпочтительно круглой формы, в которых соосно размещены как основные, так и комбинированные патрубки и которые образуют упомянутые выше каналы.

Как видно из данного чертежа, основные патрубки 46 и комбинированные патрубки 48 размещены соосно один в другом и расположены соосно с отверстиями 44. Вследствие этого отверстия 44 обладают радиальным размером, большим радиального размера комбинированных патрубков 48, которые в свою очередь обладают радиальным размером, большим радиального размера основных патрубков 46.

Сходным образом высота Н основных патрубков является большей высоты Н' комбинированных патрубков, которая в свою очередь превышает высоту отверстий 44, в данном случае совпадающую с толщиной Е пластины 24.

Верхние концы основных и комбинированных патрубков предпочтительно размещены в отверстии 44 так, что их верхние концы находятся в одной и той же горизонтальной плоскости, что лучше заметно на Фиг.4.

Естественно, что специалист в данной области техники для обеспечения соединения различных патрубков с отверстием может применить любые средства, в том числе, например, радиальные перемычки 50, припаянные к внешней боковой поверхности основного патрубка и к внутренней боковой поверхности комбинированного патрубка, и перемычки 52, припаянные к внешней боковой поверхности комбинированного патрубка и к внутренней боковой поверхности отверстия 44.

В данной конструкции проходное сечение S1 соответствует диаметральному сечению основного патрубка, сечение S2 - площади поперечного сечения между внешней боковой поверхностью основного патрубка и внутренней боковой поверхностью комбинированного патрубка, а сечение S3 - площади поперечного сечения между внешней боковой поверхностью комбинированного патрубка и боковой поверхностью отверстия 44.

В соответствии с упомянутым выше в связи с Фиг.1-3, площадь сечения S1 превышает площадь сечения S2, которая в свою очередь превышает площадь сечения S3 или равна ей.

Таким образом, нижние концы основных патрубков 46 являются погруженными в свободную от газа жидкую фазу, а верхние концы выходят в слой наполнителя 12, что обеспечивает прохождение жидкой фазы к упомянутому слою наполнителя. Пространство, охватываемое сечением S2 между основными патрубками и комбинированными патрубками, и пространство, охватываемое сечением S3 между комбинированными патрубками и отверстиями 44, обеспечивает циркуляцию и прохождение газовой фазы из облака газа 36 к слою 12.

Настоящее изобретение не ограничивается описанными примерами его осуществления и охватывает все варианты его осуществления и их эквиваленты.

В частности, взамен рабочей смеси, описанной выше, можно рассмотреть случай подачи жидкой фазы L ко дну реактора при помощи первого средства подачи при подаче газовой фазы G под распределительную тарелку при помощи другого средства подачи с образованием облака газа и поверхности раздела жидкость/газ.

Похожие патенты RU2500451C2

название год авторы номер документа
ЕМКОСТЬ, СОДЕРЖАЩАЯ СЛОЙ ГРАНУЛ, И СИСТЕМА РАСПРЕДЕЛЕНИЯ ГАЗОВОЙ И ЖИДКОЙ ФАЗ, ЦИРКУЛИРУЮЩИХ В УПОМЯНУТОЙ ЕМКОСТИ В ВОСХОДЯЩЕМ ПОТОКЕ 2008
  • Ожье Фредерик
  • Бомон Робер
  • Бойер Кристоф
  • Дармансье Дени
RU2466782C2
УСТРОЙСТВО ФИЛЬТРАЦИИ И РАСПРЕДЕЛЕНИЯ ДЛЯ КАТАЛИТИЧЕСКОГО РЕАКТОРА 2016
  • Пле Сесиль
  • Базер-Баши Фредерик
  • Арун Ясин
  • Дельтей Жоффрэ Сальватор
  • Вайсс Вильфрид
  • Эддуш Юн
  • Боннардо Жером
RU2717531C2
Сепаратор для очистки газа 2019
  • Приймак Олег Анатольевич
  • Мневец Николай Владимирович
  • Галдина Лариса Борисовна
  • Приймак Дарья Олеговна
  • Снежков Владимир Владимирович
  • Гузенков Сергей Иванович
  • Шибанов Андрей Владимирович
  • Иванова Мария Викторовна
  • Шумская Виктория Юрьевна
RU2729572C1
ОПОРНО-РАСПРЕДЕЛИТЕЛЬНАЯ ТАРЕЛКА 2020
  • Рябчиков Борис Евгеньевич
  • Пантелеев Алексей Анатольевич
  • Ларионов Сергей Юрьевич
  • Шилов Михаил Михайлович
  • Касаточкин Александр Сергеевич
RU2752351C1
РЕАКТОР ДЛЯ ПРОВЕДЕНИЯ ТРЕХФАЗНОЙ РЕАКЦИИ ЖИДКОЙ И ГАЗООБРАЗНОЙ ФАЗ В НЕПОДВИЖНОМ СЛОЕ КАТАЛИЗАТОРА 2008
  • Бехтель Маркус
  • Хепфер Беньямин
  • Вилле Михаэль
  • Дайсс Андреас
  • Гайер Райнер
  • Изельборн Штефан
  • Заутер Джон
RU2466784C2
Устройство для очистки жидкости от газовых примесей (деаэратор, дегазатор, испаритель) 2017
  • Скакунов Юрий Павлович
  • Скакунов Александр Юрьевич
  • Скакунова Алла Юрьевна
  • Кошманов Дмитрий Евгеньевич
  • Антохин Валентин Александрович
  • Дехтярева Лариса Владимировна
  • Духанин Александр Федорович
RU2660120C1
КАТАЛИТИЧЕСКИЙ РЕАКТОР С УСТРОЙСТВОМ СМАЧИВАНИЯ, ОБОРУДОВАННЫМ ПАТРУБКОМ ДЛЯ ТАНГЕНЦИАЛЬНОГО НАГНЕТАНИЯ СМАЧИВАЮЩЕЙ ТЕКУЧЕЙ СРЕДЫ. СПОСОБ ПРИМЕНЕНИЯ РЕАКТОРА И СПОСОБ ИЗГОТОВЛЕНИЯ РЕАКТОРА 2013
  • Ожье Фредерик
  • Бойер Кристоф
  • Свезиа Даниель
RU2627389C2
Устройство для мокрой очистки газа 1984
  • Абдиев Хикматулла Ергешевич
  • Молоканов Юрий Константинович
  • Шауберт Георгий Георгиевич
  • Юнусов Учкун Исмаилович
  • Шайхисламов Марат Шаймерденович
SU1178473A1
РЕАКТОР ДЛЯ ПРОВЕДЕНИЯ МНОГОФАЗНЫХ ПРОЦЕССОВ 2002
  • Логунова Е.Н.
  • Черняк А.Я.
RU2213613C1
ФИЛЬТРУЮЩАЯ ТАРЕЛКА ПРЕДВАРИТЕЛЬНОГО РАСПРЕДЕЛЕНИЯ С ПЕРЕЛИВНОЙ ТРУБОЙ ДЛЯ РЕАКТОРА С НЕПОДВИЖНЫМ СЛОЕМ И ПАРАЛЛЕЛЬНЫМИ НИСХОДЯЩИМИ ПОТОКАМИ ГАЗА И ЖИДКОСТИ 2008
  • Кудиль Абдельаким
  • Бойер Кристоф
RU2476255C2

Иллюстрации к изобретению RU 2 500 451 C2

Реферат патента 2013 года РЕАКТОР ДЛЯ ОЧИСТКИ ИЛИ ГИДРООЧИСТКИ ЖИДКОЙ НАГРУЗКИ, НАПРИМЕР ДЛЯ КАТАЛИТИЧЕСКОЙ ОЧИСТКИ ДИСТИЛЛЯТОВ СЫРОЙ ТЯЖЕЛОЙ НЕФТИ

Изобретение относится к реактору для очистки или гидроочистки жидкой нагрузки, в частности для каталитической очистки дистиллятов сырой тяжелой нефти. Реактор содержит по меньшей мере один слой наполнителя, по существу, жидкую фазу (L) и, по существу, газовую фазу (G), находящиеся на дне реактора и разделенные поверхностью раздела (38), и распределительную тарелку, снабженную по меньшей мере одним основным патрубком, обеспечивающим циркуляцию жидкой фазы (L) в направлении слоя, и по меньшей мере одним каналом, предназначенным для подачи газовой фазы (G) в упомянутый слой. Тарелка снабжена по меньшей мере одним комбинированным патрубком, предназначенным для циркуляции жидкой фазы в направлении слоя или для подачи газовой фазы в упомянутый слой. Изобретение обеспечивает повышение качества очистки дистиллятов сырой нефти. 8 з.п. ф-лы, 4 ил.

Формула изобретения RU 2 500 451 C2

1. Реактор для очистки или гидроочистки жидкой нагрузки, например для каталитической очистки дистиллятов сырой тяжелой нефти, содержащий по меньшей мере один слой наполнителя (12), по существу, жидкую фазу (L) и, по существу, газовую фазу (G), находящиеся на дне реактора и разделенные поверхностью раздела (38), и распределительную тарелку (20), снабженную по меньшей мере одним основным патрубком (32), обеспечивающим циркуляцию жидкой фазы (L) в направлении слоя, и по меньшей мере одним каналом (30), предназначенным для подачи газовой фазы (G) в упомянутый слой, и отличающийся тем, что тарелка (20) также снабжена по меньшей мере одним комбинированным патрубком (34), предназначенным для циркуляции жидкой фазы в направлении слоя или для подачи газовой фазы в упомянутый слой.

2. Реактор по п.1, отличающийся тем, что комбинированный патрубок (34) имеет высоту (Н'), меньшую высоты (Н) основного патрубка (32) и большую высоты (Е) канала (30).

3. Реактор по п.1 или 2, отличающийся тем, что комбинированный патрубок (34) обладает проходным сечением потока (S2), меньшим проходного сечения потока (S1) основного патрубка (32).

4. Реактор по п.3, отличающийся тем, что комбинированный патрубок (34) представляет собой трубку, открытую с обоих концов, причем проходное сечение потока (S2) комбинированного патрубка представляет собой диаметральное сечение упомянутой трубки.

5. Реактор по п.3, отличающийся тем, что комбинированный патрубок (34) представляет собой трубку, открытую с обоих концов, причем проходное сечение потока (S2) комбинированного патрубка представляет собой сужение (40) диаметрального сечения упомянутой трубки.

6. Реактор по п.5, отличающийся тем, что сужение представляет собой шайбу (40) с отверстием, размещенную с одного из концов комбинированного патрубка (34).

7. Реактор по п.3, отличающийся тем, что комбинированный патрубок представляет собой трубку, закрытую с нижнего конца, причем проходное сечение потока (S2) комбинированного патрубка представляет собой по меньшей мере одно отверстие (42), находящееся в периферийной стенке упомянутого патрубка.

8. Реактор по п.1, отличающийся тем, что основной патрубок (46) расположен соосно в отверстии (44), имеющемся в упомянутой тарелке и имеющем диаметральный размер, превышающий диаметральный размер упомянутого патрубка.

9. Реактор по п.8, отличающийся тем, что комбинированный патрубок (48) размещен между основным патрубком (46) и отверстием (44) соосно с ними.

Документы, цитированные в отчете о поиске Патент 2013 года RU2500451C2

US 6123323 A, 26.09.2000
WO 2007045574 A1, 26.04.2007
МНОГОСТАДИЙНЫЙ СПОСОБ СУСПЕНЗИОННОЙ РЕАКЦИОННОЙ ОТПАРКИ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 1994
  • Шийи Йин
  • Йитанг Юан
  • Цонгли Жанг
  • Хуишенг Лу
  • Лианшун Ванг
  • Йинжу Йин
RU2126706C1
Способ взаимодействия потоков газа (пара) и жидкости 1974
  • Баркар Леонид Иванович
  • Березин Геннадий Иванович
  • Чехов Олег Синанович
SU559712A1
КОНТАКТНОЕ УСТРОЙСТВО ДЛЯ РАЗДЕЛЕНИЯ КОМПОНЕНТОВ СМЕСИ В РЕКТИФИКАЦИОННОЙ УСТАНОВКЕ 2003
  • Ковалев И.С.
RU2259859C2

RU 2 500 451 C2

Авторы

Ожье Фредерик

Бойер Кристоф

Даты

2013-12-10Публикация

2009-07-14Подача