Изобретение относится к области приборостроения и может быть использовано при разработке ионных источников различного назначения, в том числе для целей масс-спектрометрии.
Обычно в масс-спектрометрии для анализа твердых веществ использовался источник тлеющего разряда с квазипланарной конфигурацией электродов (Glow-Discharge Spectroscopies. Ed. by R. Kennet Marcus. Plemim Press, New York, 1993. Стр.362). Источник содержит образец в виде стержня или диска, который является катодом. Образец помещен в разрядную камеру источника, которая является анодом. На электроды через балластное сопротивление подавалось напряжение до 2 кВ. В разрядной камере этого источника анализируемый образец распылялся ионами аргона, распыленные атомы ионизировались в плазме разряда и вытягивались электрическим полем через отверстие в разрядной камере.
Недостатком источников тлеющего разряда является то, что их фон на 3-4 порядка превышает уровень фона других плазменных ионных источников, что требует дополнительных мер по его уменьшению, и эти меры в то же время существенно уменьшают производительность анализа и снижают популярность метода.
В последнее время начался серийное производство масс-спектрометра тлеющего разряда на базе разряда Гримма (С. Beyer, I. Feldmarm, D. Gilmour, V. Hoffmann, N. Jakubowski. Spectrochimica Acta Part В 57 (2002) 1521-1533). Выпускаемый прибор позволяет анализировать только плоские проводящие образцы, что ограничивает его использование в аналитической практике. Кроме того, скорость ввода аргона в разрядную камеру достигает 0.5 л/мин, что перегружает вакуумную систему.
Известен ионный источник (JP 6124685 (A), OTSUKA KIICHIRO, GLOW DISCHARGE TYPE ION SOURCE, 06.05.1994). Однако этот источник имеет ограниченное применение и используется для решения отдельных задач ввиду того, что для системы канализации пучка используются конические электроды, а для откачки источника необходимо наличие двух турбомолекулярных насосов. Это усложняет конструкцию источника.
Известен плазменный ионный источник (RU 2147387 C1, Сихарулидзе Г.Г., Лежнев А.Е., 10.04.2000). По центральной оси щели через изолятор размещено устройство для подачи рабочего вещества, выполненное в виде капилляра и соединенное с разрядной камерой источником высокого напряжения. Источник включает систему вытягивания и фокусировки ионов и дополнительно содержит кольцевой полый анод, расположенный в разрядной камере соосно капилляру. Анод соединен с дополнительным источником высокого напряжения так, что отрицательный полюс первого источника соединен с капилляром, положительный полюс - с кольцевым анодом, отрицательный полюс второго источника питания соединен с кольцевым анодом, а положительный полюс - с разрядной камерой.
Описан также ионный источник тлеющего разряда для целей масс-спектрометрии на базе полого катода (RU 2174676 С1, Сихарулидзе Г.Г., 10.10.2001). На оси полого катода с помощью держателя образца закрепляется анализируемый образец диаметром 1-1,5 мм, что в 5-10 раз меньше внутреннего диаметра катода. Глубина полости катода около 20 мм, внутренний диаметр - 5-10 мм. Напротив полого катода располагается отверстие для откачки разрядной камеры и для вытягивания ионов из плазмы. В полый катод через капилляр напускается любой инертный газ, например аргон. Для предотвращения перехода разряда из полого катода на его внешнюю поверхность анод располагается на расстоянии 0,5-1,5 мм от катода. В полом катоде анализируемый образец распыляется ионами аргона, распыленные атомы диффундируют в область отрицательного свечения, часть из них ионизируется. Плазма диффундирует к аноду, ионы электрическим полем вытягиваются через отверстие в разрядной камере и формируются в ионный пучок. Однако степень ионизации распыленного материала в плазме в этом источнике недостаточна.
Наиболее близким к патентуемому является ионный источник с полым катодом, описанный в ст. Г.Г. Сихарулидзе. «Ионный источник с полым катодом для элементного анализа твердых тел», Масс-спектрометрия, №1, стр.21-30, 2004 - прототип. Он содержит разрядную камеру с выходной щелью, по центральной оси которой помещен полый катод, соединенный с источником высокого напряжения, а также систему вытягивания и фокусировки ионов с помощью линзы Пирса. Анализируемый образец устанавливался вдоль оси полого катода. Плазмообразующий газ по капилляру через дно полого катода непосредственно из атмосферы вводится в его полость. Напротив полого катода в стенке разрядной камеры выполнено отверстие диаметром около 1 мм для откачки камеры и вытягивания ионов. Линза Пирса представляет собой цилиндрическую деталь, одна сторона которой вогнута и формирует параболическое электрическое поле для получения квазипараллельного ионного пучка на выходе источника, а другая сторона является плоской.
Однако, несмотря на наличие линзы Пирса, светосила данного ионного источника не достаточна для анализа твердых веществ с чувствительностью выше ppb.
Настоящее изобретение направлено на совершенствование конструкции ионного источника для масс-спектрометрического анализа твердых тел.
Патентуемый ионный источник тлеющего разряда содержит размещенные с зазором и соосно цилиндрические полый анод, имеющий профилированную донную часть и полый катод, размещенный в полости анода со стороны его открытого торца, совместно образующие разрядную камеру, выходом которой является осевое отверстие для вытягивания ионов и откачки, образованное в донной части полого анода, держатель образца, установленный по оси полого катода и канал для ввода инертного газа в полый катод.
Отличие источника состоит в том, что профиль донной части анода выполнен с возможностью одновременной самофокусировки электронного потока из полого катода в зону осевого отверстия разрядной камеры и формирования параболического электрического поля на выходе из камеры, при этом донная часть анода, обращенная внутрь камеры, имеет форму выпуклого конуса, а обращенная наружу - поверхность вогнутой сферической формы.
Источник может характеризоваться тем, что поверхность вогнутой сферической формы образует линзу Пирса, а также тем, что площадь в основании выпуклого конуса донной части анода составляет 0,1-0,2 от ее общей площади, а, кроме того, тем, что угол при вершине образующей выпуклого конуса составляет 90-130°.
Технический результат состоит в увеличении светосилы ионного источника тлеющего разряда за счет уменьшения диффузионных потерь ионов в разрядной камере.
В основе изобретения лежат следующие соображения и экспериментальные данные. Как отмечено выше, в обычном плазменном источнике тлеющего разряда анод вытягивает из плазмы электронный поток, который увлекает за собой ионы (Сихарулидзе Г.Г., Генерация ионного пучка в источнике тлеющего разряда, ПТЭ, 2009, №2, с.105-109). То есть ионы диффундируют к аноду за счет амбиполярной диффузии, а новым является то, что в месте выхода ионов из разрядной камеры на поверхности донной части анода устанавливается конусная диафрагма. В месте установки конуса напряженность электрического поля сильно возрастает и конус самофокусирует на свою вершину электронный поток из полого катода. Этот электронный поток увлекает с собой положительные ионы, которые фокусируются на вершину конуса вместе с электронами. Это дает возможность увеличения светосилы ионного источника за счет самофокусировки электронного пучка, генерируемого полым катодом на вершину конуса. Ионы за счет амбиполярной диффузии также фокусируются на вершину конуса, в результате ионный ток, вытягиваемый из вершины конуса электрическим полем, резко возрастает.
Сущность изобретения иллюстрируется чертежом, на котором приведена схема плазменного источника с полым катодом.
Ионный источник тлеющего разряда содержит соосно установленные по оси O-O1 цилиндрический полый анод 1, имеющий профилированную донную часть 2, и цилиндрический полый катод 3. Катод 3 размещен в полости анода 1 со стороны его открытого торца 4 с образованием разрядной камеры 5. В профилированной донной части 2 выполнено сквозное осевое отверстие 6, предназначенное для вытягивания ионов и откачки ионного источника. По оси полого катода 3 установлен держатель 7 анализируемого образца 8, а сама полость катода 2 соединена с капилляром 8 для ввода инертного газа в полый катод. Держатель 9 полого катода и донная часть 2 анода 1 соединены друг с другом посредством кварцевого цилиндра 10 и витоновых уплотнений 11. Донная часть 2 анода, обращенная внутрь камеры 5, имеет форму выпуклого конуса 12, обеспечивающего самофокусировку электронного потока 14 из полого катода 2 в зону 15 размещения осевого отверстия 6 разрядной камеры.
Обращенная наружу донная часть 2 анода имеет поверхность 13 вогнутой сферической формы для формирования параболического электрического поля на выходе из камеры и представляет собой по существу линзу Пирса и обеспечивает формирование квазипараллельного ионного пучка.
Площадь в основании 16 выпуклого конуса донной части анода составляет 0,1-0,2 от ее общей площади. Угол при вершине образующей выпуклого конуса 12 составляет 90-130°.
Источник работает следующим образом:
Плазмообразующий газ-аргон через капилляр 8 вводится в полый катод 3. На полый катод 3 подается отрицательное (относительно анода 1) напряжение до 2 кВ. В полом катоде 3 возникает тлеющий разряд и плазма. Ионы бомбардируют образец 8 и распыляют его. Распыленные атомы диффундируют в область отрицательного свечения и ионизируются. В электрическом поле положительный потенциал анода 1 вытягивает из плазмы электроны, которые увлекают за собой ионы. Расстояние между полым катодом и анодом увеличивается до 25-30 мм для улучшения условий фокусировки электронного пучка 14. Электронный пучок фокусируется на вершину конуса 12 вместе с ионами (амбиполярная диффузия). Ионы вытягиваются из отверстия 6 в вершине конуса 12 внешним ускоряющим потенциалом (не показано), а поверхность 13 вогнутой сферической формы - линза Пирса, формирует квазипараллельный ионный пучок. Благодаря такой системе фокусировки потери ионного пучка, генерируемого полым катодом, уменьшаются более чем на два порядка.
Технически донная часть 2 анода может выполняться в виде единой детали. В результате этот элемент выполняет двойную задачу: электроны и ионы фокусируются на вершину конуса в разрядной камере, а затем вытянутые из отверстия в конусе ионы формируются в квазипараллельный ионный пучок. В результате общее увеличение светосилы плазменного ионного источника превышает два порядка величины.
Изобретение может быть использовано как самостоятельный ионный источник, в микроэлектронике при катодном распылении твердых веществ, а также в аналитической химии при масс-спектральном элементном анализе твердых веществ с высокой чувствительностью методом тлеющего разряда.
название | год | авторы | номер документа |
---|---|---|---|
ПЛАЗМЕННЫЙ ИСТОЧНИК С ПОЛЫМ КАТОДОМ | 2002 |
|
RU2211502C1 |
ПЛАЗМЕННЫЙ ИОННЫЙ ИСТОЧНИК | 1998 |
|
RU2147387C1 |
Газоразрядный источник электро-HOB | 1979 |
|
SU813536A1 |
ГАЗОРАЗРЯДНАЯ ЭЛЕКТРОННАЯ ПУШКА | 1983 |
|
SU1126128A1 |
СПОСОБ АНАЛИЗА ТВЕРДЫХ ТЕЛ С ПОМОЩЬЮ ИОННОГО ИСТОЧНИКА ТЛЕЮЩЕГО РАЗРЯДА С ПОЛЫМ КАТОДОМ | 2000 |
|
RU2174676C1 |
ГАЗОРАЗРЯДНАЯ ЭЛЕКТРОННАЯ ПУШКА, УПРАВЛЯЕМАЯ ИСТОЧНИКОМ ИОНОВ С ЗАМКНУТЫМ ДРЕЙФОМ ЭЛЕКТРОНОВ | 2022 |
|
RU2792344C1 |
МАСС-СПЕКТРАЛЬНОЕ УСТРОЙСТВО ДЛЯ БЫСТРОГО И ПРЯМОГО АНАЛИЗА ПРОБ | 2012 |
|
RU2487434C1 |
Устройство для плазменной дезактивации элементов конструкции ядерного реактора | 2021 |
|
RU2771172C1 |
ПЛАЗМЕННЫЙ ИОННЫЙ ИСТОЧНИК | 1994 |
|
RU2083020C1 |
Способ нанесения покрытий путем плазменного напыления и устройство для его осуществления | 2015 |
|
RU2607398C2 |
Изобретение относится к области приборостроения. Технический результат - увеличение светосилы ионного источника тлеющего разряда за счет уменьшения диффузионных потерь ионов в разрядной камере. Источник тлеющего разряда содержит размещенные с зазором и соосно цилиндрические полый анод, имеющий профилированную донную часть, и полый катод, размещенный в полости анода со стороны его открытого торца, совместно образующие разрядную камеру. Выходом камеры является осевое отверстие для вытягивания ионов и откачки, образованное в донной части полого анода. Профиль донной части анода выполнен с возможностью одновременной самофокусировки электронного потока из полого катода в зону осевого отверстия разрядной камеры и формирования параболического электрического поля на выходе из камеры, при этом донная часть анода, обращенная внутрь камеры, имеет форму выпуклого конуса, а обращенная наружу - поверхность вогнутой сферической формы. 3 з.п. ф-лы, 1 ил.
1. Ионный источник тлеющего разряда, содержащий размещенные с зазором и соосно цилиндрические полый анод, имеющий профилированную донную часть, и полый катод, размещенный в полости анода со стороны его открытого торца, совместно образующие разрядную камеру, выходом которой является осевое отверстие для вытягивания ионов и откачки, образованное в донной части полого анода, держатель образца, установленный по оси полого катода, и канал для ввода инертного газа в полый катод,
отличающийся тем, что
профиль донной части анода выполнен с возможностью одновременной самофокусировки электронного потока из полого катода в зону осевого отверстия разрядной камеры и формирования параболического электрического поля на выходе из камеры, при этом донная часть анода, обращенная внутрь камеры, имеет форму выпуклого конуса, а обращенная наружу - поверхность вогнутой сферической формы.
2. Источник по п.1, отличающийся тем, что поверхность вогнутой сферической формы образует линзу Пирса.
3. Источник по п.1, отличающийся тем, что площадь в основании выпуклого конуса донной части анода составляет 0,1-0,2 от ее общей площади.
4. Источник по п.1, отличающийся тем, что угол при вершине образующей выпуклого конуса составляет 90-130°.
Масс-спектрометрия, 2004, №1, с.21-30 | |||
ПЛАЗМЕННЫЙ ИОННЫЙ ИСТОЧНИК | 1998 |
|
RU2147387C1 |
ПЛАЗМЕННЫЙ ИСТОЧНИК С ПОЛЫМ КАТОДОМ | 2002 |
|
RU2211502C1 |
СПОСОБ ПОЛУЧЕНИЯ ЭЛЕКТРОННОГО ПУЧКА И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ (ВАРИАНТЫ) | 2007 |
|
RU2341846C1 |
JP 6124685 A, 06.05.1994 | |||
Хиральные диацилгидразиновые лиганды для модуляции экспрессии экзогенных генов с помощью экдизон-рецепторного комплекса | 2013 |
|
RU2640807C2 |
Авторы
Даты
2014-01-20—Публикация
2012-07-10—Подача