СТАЛЬ АРМАТУРНАЯ ТЕРМОМЕХАНИЧЕСКИ УПРОЧНЕННАЯ ДЛЯ ЖЕЛЕЗОБЕТОННЫХ КОНСТРУКЦИЙ Российский патент 2014 года по МПК C22C38/54 

Описание патента на изобретение RU2506339C1

Изобретение относится к металлургии стали и может быть использовано при производстве арматурного периодического профиля, содержащего кремний, марганец и бор.

Для производства арматурного периодического профиля используют как углеродистую, так и низколегированную сталь. Особенности сталей описаны, например, в ГОСТ 5781-82 «Сталь горячекатаная для армирования железобетонных конструкций. Технические условия».

Известна легированная арматурная сталь (патент Японии №2002-069581 от 08.03.2002 г., заявка №2000 -270635 от 06.09.2000 г.), содержащая компоненты в соотношении, масс.%:

Углерод 0,8…1,30 Марганец 0,25…2,00 Кремний 0,10…2,50 Фосфор Примесь Сера Примесь Хром 0,05…2,00 Никель 0,05…1,00 Медь 0,05…1,00 Алюминий не более 0,05 Железо Остальное

Недостатком этой стали является увеличенное содержание хрупких силикатов из-за большого содержания кремния, что впоследствии приводит к недостаточной пластичности холоднодеформированного арматурного периодического профиля, кроме того, в готовой продукции не достигается требуемое сочетание пластичности и прочности.

Наиболее близким аналогом к заявляемому объекту является сталь 25Г2С, описанная в ГОСТ 5781-82 «Сталь горячекатаная для армирования железобетонных конструкций». Она содержит углерод, кремний, марганец, серу, фосфор, хром, никель, медь и железо, и характеризуется содержанием указанных компонентов в соотношении, масс.%:

Углерод 0,20…0,29 Марганец 1,20…1,60 Кремний 0,60…0,90 Фосфор Не более 0,040 Сера Не более 0,045 Хром Не более 0,30 Никель Не более 0,30 Медь Не более 0,30 Железо Остальное

Ожидаемый технический результат - обеспечение требований класса прочности не ниже Ат800 (σT не менее 800 Н/мм2) при производстве стали арматурной термомеханически упрочненной для железобетонных конструкций.

Для решения этой задачи, сталь арматурная термомеханически упрочненная для железобетонных конструкций, содержащая углерод, кремний, марганец, серу, фосфор, хром, никель, медь, и железо, согласно изобретения, она дополнительно содержит бор и азот в следующем соотношении (в масс.%):

Углерод 0,20…0,29 Марганец 1,20…1,60 Кремний 0,60…0,90 Фосфор Не более 0,040 Сера Не более 0,010 Хром 0,01…0,25 Никель Не более 0,30 Медь Не более 0,30 Бор 0,001…0,005 Азот Не более 0,008 Железо Остальное,

Все вышеуказанные пределы содержания компонентов в предлагаемой стали получены в результате обработки опытных данных.

Сущность заявляемого технического решения заключается в оптимизации содержания углерода, кремния, марганца, хрома, азота и бора в стали, в результате этого, повышаются прочностные характеристики проката (предел текучести), что особенно важно при производстве стали арматурная термомеханически упрочненная для железобетонных конструкций класса Ат800 и выше.

Бор при кристаллизации захватывает водород и ограничивает насыщение им стали, стабилизирует подкорковую зону непрерывнолитой заготовки, подавляет ликвацию серы и других примесей - то есть значительно снижает подусадочную ликвацию. Кроме того, нитрид бора BN исключает протекание процессов старения во времени за счет полного связывания азота. Также бор способствует более равномерному распределению базовых и примесных элементов между составляющими структуры, в результате связывания атомов азота в боронитриды и карбоборонитридные соединения мартенсит в структуре имеет меньшую концентрацию азота и, как менее твердый и прочный, приобретает большую склонность к деформационному формоизменению.

Опытную проверку заявляемого технического решения осуществили при производстве стали арматурной термомеханически упрочненной для железобетонных конструкций в электросталеплавильном цехе ОАО «Магнитогорского металлургического комбината» с последующей ее прокаткой на стане «370». Результаты опытов оценивали по результатам механических испытаний.

Наилучшие результаты (выход годного по механическим свойства на класс прочности на уровне 99,25%) получены, при использовании предлагаемой стали. Отклонения от требуемого химического состава приводили к получению брака по механическим свойствам (пределу текучести).

Так, при содержании в стали (масс.%) C<0,20 (но при рекомендуемом содержании остальных элементов), Mn<1,20, Si<0,60, B<0,001 и Cr<0.010 (при том же условии) не удалось получить предел текучести у 2,5-5,1% круглого проката.

При получении же проката из стали, химический состав которой имел хотя бы один компонент с отличной (от заявляемой) величиной, отсортировка готового проката по недопустимым отклонениям от заданной нормы предела текучести составляла не менее 3,5-5,1%.

Сравнительные испытания стали 25Г2С, выбранной в качестве ближайшего аналога, привели к отсортировке по вышеназванной причине порядка 41,39% готового проката. Таким образом, опытная проверка подтвердила приемлемость найденного технического решения для выполнения поставленной цели и его преимущество перед известным объектом.

Пример конкретного выполнения.

Сталь арматурная термомеханически упрочненная для железобетонных конструкций содержит (масс.%): C=0,22; Si=0,79; Mn=1,55; S=0,004; P=0,009; Cr=0,17; Ni=0,060; Cu=0,16; N=0.006; B=0,0035; остальное - железо.

Предел текучести составил 963 Н/мм2, а относительное сужение - 9,3%.

Похожие патенты RU2506339C1

название год авторы номер документа
СТАЛЬ АРМАТУРНАЯ ТЕРМОМЕХАНИЧЕСКИ УПРОЧНЕННАЯ ДЛЯ ЖЕЛЕЗОБЕТОННЫХ КОНСТРУКЦИЙ 2005
  • Криночкин Эдуард Викторович
  • Карпов Анатолий Александрович
  • Филипьев Сергей Николаевич
  • Наумов Николай Викторович
  • Васин Евгений Александрович
  • Решетников Виктор Анатольевич
  • Щербаков Станислав Андреевич
  • Губанов Владимир Егорович
  • Цикарев Юрий Михайлович
  • Александров Евгений Борисович
RU2303646C2
СПОСОБ ИЗГОТОВЛЕНИЯ ВЫСОКОПРОЧНОЙ ХОЛОДНОДЕФОРМИРОВАННОЙ АРМАТУРЫ ПЕРИОДИЧЕСКОГО ПРОФИЛЯ 2023
  • Дубовский Сергей Васильевич
  • Канаев Денис Петрович
  • Столяров Алексей Юрьевич
  • Соколов Александр Алексеевич
  • Носков Сергей Евгеньевич
  • Дегтярев Александр Викторович
  • Телегин Вячеслав Евгеньевич
  • Аксенов Владислав Викторович
RU2822910C1
СПОСОБ ПРОИЗВОДСТВА СТАЛЬНОЙ ВЫСОКОПРОЧНОЙ АРМАТУРЫ 2020
  • Мухин Александр Алексеевич
  • Канаев Денис Петрович
  • Дрягун Эдуард Павлович
  • Носков Сергей Евгеньевич
  • Соколов Александр Алексеевич
  • Картунов Андрей Дмитриевич
  • Дегтярев Александр Виктороович
  • Ивин Юрий Александрович
  • Сычков Александр Борисович
RU2764045C1
СПОСОБ ИЗГОТОВЛЕНИЯ АРМАТУРНОЙ СТАЛИ 2018
  • Мельников Сергей Сергеевич
  • Троицкий Юрий Андреевич
  • Лебедев Алексей Владимирович
  • Слабожанкин Александр Степанович
  • Старухин Игорь Николаевич
RU2695719C1
СТАЛЬ И ИЗДЕЛИЕ, ВЫПОЛНЕННОЕ ИЗ НЕЕ (ВАРИАНТЫ) 2008
  • Мальцев Андрей Борисович
  • Кузнецов Виктор Валентинович
  • Струнина Людмила Михайловна
  • Золотова Лариса Юрьевна
  • Ордин Владимир Георгиевич
  • Головко Владимир Андреевич
  • Варфоломеев Владимир Владимирович
  • Рузаев Дмитрий Григорьевич
  • Горин Александр Давидович
RU2387731C2
АРМАТУРНАЯ ГОРЯЧЕКАТАНАЯ СТАЛЬ И СПОСОБ ВЫПЛАВКИ СТАЛИ ДЛЯ ЕЕ ПОЛУЧЕНИЯ 2000
  • Каменских А.А.
  • Карпов А.А.
  • Васин Е.А.
  • Седых А.М.
  • Губанов В.Е.
  • Мадатян С.А.
  • Наумов Н.В.
  • Дегтярев В.В.
  • Демидов А.Е.
RU2175359C1
СПОСОБ ПРОИЗВОДСТВА ЛИСТОВОЙ СТАЛИ С ВЫСОКОЙ ИЗНОСОСТОЙКОСТЬЮ 2016
  • Чукин Михаил Витальевич
  • Полецков Павел Петрович
  • Гущина Марина Сергеевна
  • Бережная Галина Андреевна
RU2625861C1
Способ производства высокопрочного хладостойкого листового проката 2023
  • Полецков Павел Петрович
  • Кузнецова Алла Сергеевна
  • Алексеев Даниил Юрьевич
  • Емалеева Динара Гумаровна
  • Гулин Александр Евгеньевич
  • Картунов Андрей Дмитриевич
  • Денисов Сергей Владимирович
  • Казаков Александр Сергеевич
  • Брайчев Евгений Викторович
  • Стеканов Павел Александрович
RU2806645C1
СПОСОБ ИЗГОТОВЛЕНИЯ АРМАТУРНОЙ СТАЛИ 2013
  • Пряников Руслан Васильевич
  • Кузнецов Сергей Петрович
  • Слабожанкин Александр Степанович
  • Старухин Игорь Николаевич
  • Лебедев Владимир Николаевич
  • Морозков Андрей Викторович
RU2543045C1
Высокопрочный низкотемпературный свариваемый арматурный стержень 2021
  • Адигамов Руслан Рафкатович
  • Федотов Евгений Сергеевич
  • Водовозова Галина Сергеевна
  • Андреев Антон Романович
  • Корчагин Андрей Михайлович
  • Коротченко Дарья Сергеевна
  • Манаков Дмитрий Геннадьевич
RU2774692C1

Реферат патента 2014 года СТАЛЬ АРМАТУРНАЯ ТЕРМОМЕХАНИЧЕСКИ УПРОЧНЕННАЯ ДЛЯ ЖЕЛЕЗОБЕТОННЫХ КОНСТРУКЦИЙ

Изобретение относится к металлургии, а именно к составу стали, используемой при производстве арматурного периодического профиля для железобетонных конструкций. Сталь содержит, в мас.%: углерод 0,20-0,29, марганец 1,20-1,60, кремний 0,60-0,90, фосфор не более 0,040, сера не более 0,010, хром 0,01-0,25, никель не более 0,30, медь не более 0,30, бор 0,001-0,005, азот не более 0,008, железо остальное. Обеспечивается требуемый класс прочности не ниже Ат800 с σT не менее 800 Н/мм2. 1 пр.

Формула изобретения RU 2 506 339 C1

Сталь арматурная термомеханически упрочненная для железобетонных конструкций, содержащая углерод, кремний, марганец, серу, фосфор, хром, никель, медь и железо, отличающаяся тем, что она дополнительно содержит бор и азот при следующем соотношении компонентов, мас.%:
углерод 0,20-0,29 марганец 1,20-1,60 кремний 0,60-0,90 фосфор не более 0,040 сера не более 0,010 хром 0,01-0,25 никель не более 0,30 медь не более 0,30 бор 0,001-0,005 азот не более 0,008 железо остальное

Документы, цитированные в отчете о поиске Патент 2014 года RU2506339C1

УСТРОЙСТВО ДЛЯ ВЫЧЕРПЫВАНИЯ АЛЮМИНИЯ ИЗ ЭЛЕКТРОЛИТИЧЕСКИХ ВАНН 1934
  • Гавриленко И.Л.
SU41684A1
ВИСКОЗИМЕТР 1926
  • Майзельс Л.И.
SU8334A1
Обмазка для предохранения от отбела при заливке чугуна в металлические формы 1942
  • Горбунов М.А.
  • Гостев Б.И.
  • Задзишек И.Б.
  • Пухов А.А.
  • Степин П.И.
  • Щекотихин К.Т.
SU68810A1
КЛАПАН ДОЗИРОВАНИЯ ТОПЛИВНЫХ ПАРОВ ДЛЯ ДВИГАТЕЛЯ ВНУТРЕННЕГО СГОРАНИЯ ТРАНСПОРТНОГО СРЕДСТВА 1999
  • Лысенко Е.В.
  • Васильчук А.Н.
  • Корчев Ф.С.
  • Андронов Ю.Г.
  • Лаптев В.В.
RU2166114C1
EP 1921172 A1, 14.05.2008.

RU 2 506 339 C1

Авторы

Новицкий Руслан Витальевич

Шестаков Иван Анатольевич

Ивин Юрий Александрович

Дзюба Антон Юрьевич

Павлов Владимир Викторович

Даты

2014-02-10Публикация

2012-11-01Подача