FIELD: transport.
SUBSTANCE: invention relates to spacecraft electric power supply with the help of solar batteries. Proposed method comprises definition of preset angle of solar battery orientation to the Sun by measured angular position of normal to battery working surface and computation of design angle relative thereto. Solar battery is spinned in direction of decrease in mismatch between preset and design angles. Solar battery acceleration angle (αAC) and deceleration angle (αDEC) are defined. Design angle is corrected when angle transducer readings vary by discrete sector of solar battery turn. Threshold of operation and drop-away (αT) and (αD) are set to terminate battery spinning if mismatch between preset angle and current angle increases but not over αT. Solar battery angular velocity is set or the order and larger than maximum angular velocity of spacecraft revolution around the Earth while discrete sector magnitude is set to smaller than αT. Solar battery working angle (αW) is set provided that αT < αW < (α"ГОР" - 2·(αAC + αDEC)). Angular position of closest beam of angle αW is assigned to preset angle if direction to the Sun in projection to the plane of spinning of said normal is located outside of αW. Is angular position of said normal is outside αW to vary in direction of increase of angle relative to nearest beam of angle αW, failure warning is generated to terminate control over solar battery.
EFFECT: ruled out jamming and breakage of solar battery panels or spacecraft onboard hardware at turns from 90° to 180°.
3 dwg
Authors
Dates
2014-03-20—Published
2012-11-28—Filed