ТОКОСЪЕМНАЯ ВСТАВКА ТОКОПРИЕМНИКА ЭЛЕКТРОТРАНСПОРТНОГО СРЕДСТВА И СПОСОБ ЕЕ ИЗГОТОВЛЕНИЯ Российский патент 2014 года по МПК B60L5/08 C04B35/83 C04B35/52 

Описание патента на изобретение RU2510339C1

Изобретение относится к изделиям скользящего контактного токосъема, в частности к токосъемным вставкам для железнодорожного и городского электротранспорта и технологии ее получения.

В патенте RU 2150444 раскрывается токосъемная вставка и способ ее изготовления.

Токосъемная ставка выполнена из материала, содержащего, в мас.%: частицы естественного графита 10-90, коксовый остаток 5-20 и пиролитический углерод 6-70.

Способ предусматривает смешение частиц графита и связующего, формирование материала путем прессования данной смеси, обжиг прессованной смеси при 800-1100°С в течение 0,5-1,5 ч в условиях, обеспечивающих получения открытой пористости не менее 10% и последующее насыщение полученной пористой заготовки пироуглеродом.

Материал, из которого выполнена вставка, характеризуется следующими свойствами: предел прочности на сжатие - 49 МПа, удельное электрическое сопротивлением - 2,8 мкОм·м, износостойкость вставки при трении с токосъемом - 0,1-0,14 мм на 1000 км, уменьшенный в 2-5 раз износ медного контртела, предельно допустимая линейная плотность электрического тока, выше которой начинается катастрофический износ материала и/или медного контртела, - более 20 А/мм.

Наиболее близкое техническое решение раскрыто в патенте на полезную модель RU 109703. В данном патенте описывается токосъемная вставка токоприемника электротранспортного средства, которая включает основание и контактную поверхность и выполнена из композиционного материала, содержащего следующие компоненты, мас.%: графит 5,0-30,0, кокс 50,0-80,0, железный порошок 0,5-1,5, коксовый остаток - остальное.

Вставки получали следующим образом: частицы графита, кокса и связующего смешивали в закрытом вращающемся барабане. Затем путем прессования в стальной форме формовали заготовку, после чего полученную заготовку обжигали для получения коксового остатка при температуре 800-1000°С в условиях, обеспечивающих получение пористости, содержащей не более 10% закрытой пористости.

Из полученного материала механической обработкой изготавливалось токосъемное контактное изделие в виде пластины с «ласточкиным хвостом».

Как следует из описания к известному патенту, вставка демонстрирует приемлемый уровень износостойкости при высоких плотностях тока и отличную интенсивность изнашивания при низких плотностях тока и при скольжении без тока, что позволяет использовать материал в производстве контактов, как электровозов, так и электричек. Такие универсальные углеродные вставки одинаково надежно могут эксплуатироваться при любых токах без скачков в интенсивности изнашивания и без аварийной замены.

К недостаткам известного технического решения относятся следующие:

Вследствие того что выход коксового остатка из связующего составляет не более 50%, к недостаткам наиболее близкого технического решения относится пониженная плотность, как следствие этого, высокая интенсивность изнашивания при повышенных плотностях тока (>12 А/мм);

Вставка обладает повышенной интенсивностью изнашивания при повышенных скоростях движения (>140 км/час);

Вследствие пониженной плотности у вставки повышенное удельное электрическое сопротивление (>12 мкОм·м)

Задачей изобретения является устранение присущих известным техническим решениям недостатков, в частности: снижение удельного электрического сопротивления до значений 10-11 мкОм·м и менее; снижение интенсивности изнашивания при повышенных токах и повышенных скоростях движения. Подобная задача важна, например, для движения электрифицированного транспорта с повышенными скоростями, т.е. для скоростей движения более 140 км/час. Для таких скоростей движения требуется повышенная токовая нагрузка, при которой плотности тока могут превышать 12 А/мм.

Поставленная задача решается токосъемной вставкой токоприемника электротранспортного средства, включающей основание и контактную поверхность, выполненной из композиционного материала, содержащего графит, кокс, железный порошок и коксовый остаток при следующем соотношении компонентов, мас.%:

Графит 12,0-60,0 Кокс 10,0-50,0 Железный порошок 2,0-5,0 Коксовый остаток остальное

В частных воплощениях изобретения поставленная задача решается вставкой, основание которой выполнено в виде «ласточкиного хвоста».

Поставленная задача также решается способом изготовления токосъемной вставки токоприемника электротранспортного средства, в соответствии с которым осуществляют смешение частиц графита, кокса, связующего и железного порошка, формирование из полученной смеси заготовки, последующий обжиг полученной заготовки при условиях, обеспечивающих карбонизацию связующего с получением коксового остатка, содержащего не менее 10 об.% сквозных пор, последующую пропитку связующим полученной карбонизованной заготовки, повторный обжиг для карбонизации пропитанной заготовки с получением результирующей заготовки и механическую обработку результирующей заготовки с получением вставки.

В частных воплощениях изобретения поставленная задача решается способом, в котором в качестве связующего используют высокотемпературный нефтяной или каменноугольный пек.

В частных воплощениях изобретения поставленная задача решается также тем, что пропитку связующим осуществляют под давлением от 40 МПа до 50 МПа в защитной атмосфере.

Сущность изобретения состоит в следующем.

Вставка выполнена из материала со значительно большим содержанием железа, чем в известном материале, а при изготовлении данной вставки дополнительно производится пропитка карбонизованной заготовки связующим и последующий повторный обжиг для карбонизации связующего, проводимый в защитной атмосфере.

Данные отличительные признаки изобретения позволяют достичь декларируемый технический результат - снижения износа при повышенных плотностях тока и повышенных скоростях движения, снижения удельного электрического сопротивления.

Под снижением интенсивности изнашивания при повышенных плотностях тока и повышенных скоростях движения понимается значительное, минимум в 1,5-2 раза, снижение интенсивности изнашивания при скоростях более 140 км/час и/или при плотностях тока более 12% по сравнению с наиболее близким решением. Изобретение может быть полезно для электрифицированного транспорта с повышенными скоростями движения (>140 км/час). Движение с такими скоростями осуществляется обычно при плотностях тока более 12 А/мм. Для снятия тока с такой плотностью необходимо удельное электрическое сопротивление 10-11 мкОм·м и менее.

Снижение интенсивности изнашивания при повышенных скоростях и повышенных плотностях тока обусловлено проявлением каталитического действия порошка железа при трении. Железо ускоряет прохождение физико-химических процессов, способствующих снижению интенсивности изнашивания. Железный порошок служит катализатором этой химической реакции. Интенсификация (ускорение) этой реакции приводит к значительному снижению интенсивности изнашивания. Каталитическое действие железа заметно повышается при его содержании более 2% мас. и значительнее проявляется в жестких условиях трения, т.е. при высоких скоростях и плотностях тока.

Функция, выполняемая железом в настоящем изобретении, иная, чем в известном изобретении. Если в известном техническом решении железо в достаточно небольших пределах содержания вводилось для снижения механической доли изнашивания, то содержание железа в предложенной вставке в интервале 2-5 мас.% оказывает каталитическое действие, интенсифицируя несамопроизвольные физико-химические процессы при трении, на которые расходуется часть энергии трения.

К таким процессам относятся не самопроизвольные химические реакции, т.е. реакции с отрицательным производством энтропии. В скользящем электрическом контакте это, например, реакция восстановления углерода из оксида углерода медью. В результате снижается часть энергии трения, затрачиваемая на изнашивание.

Соответственно снижается интенсивность изнашивания. Каталитическое действие железа начинается при его содержании 2,0%, содержание порошка железа более 5% может привести к значительному увеличению интенсивности изнашивания медного контртела - контактного провода.

Снижение интенсивности изнашивания с помощью порошка железа позволяет увеличить относительное содержание графита, что способствует снижению удельного электрического сопротивления.

Для повышения плотности токосъемной вставки и снижения пористости осуществляется дополнительная пропитка пеком с последующим карбонизирующим обжигом. Это позволяет дополнительно снизить удельное электрическое сопротивление.

Качественные и количественные соотношения других компонентов материала вставки выбраны из следующих соображений.

Кокс обеспечивает токосъемной вставке необходимую твердость. Содержание кокса менее нижнего предела приведет к снижению твердости и, как следствие, значительному увеличению механической части изнашивания. Коксовый остаток обеспечивает такие характеристики, как Пределы Прочности на сжатие и на статический изгиб.

Содержание коксового остатка менее нижнего предела приведет к снижению пределов прочности на сжатие и статический изгиб и, как следствие, к разрушению вставки при механических нагрузках.

Повышение содержания кокса и коксового остатка выше верхнего предела приводит к повышению интенсивности изнашивания контактного провода.

Содержание кокса и коксового остатка в заявленном изобретении в целом ниже его содержания в наиболее близком изобретении. Однако интенсивность изнашивания вставки при этом не растет, а наоборот снижается. Это происходит вследствие того, что часть механической моды изнашивания вставки переводится в химическую моду с помощью каталитического действия железа. Снижение содержания кокса и коксового остатка позволяет увеличить содержание графита, что приводит к снижению удельного сопротивления и интенсивности изнашивания контактного провода, а также к увеличению дугостойкости. Для дополнительного повышения содержания коксового остатка и снижения пористости проводят дополнительную жидкофазную пропитку пеком.

При выходе за пределы содержания кокса данные свойства значительно ухудшаются.

Графит необходим для обеспечения достаточного удельного электрического сопротивления, самосмазывающих свойств, высокой дугостойкости. Выход за заявленный нижний предел приводит к резкому снижению дугостойкости электроконтактной вставки, увеличению удельного электрического сопротивления, увеличению интенсивности изнашивания контактного провода. Выход за заявленный верхний предел приводит к резкому снижению механических свойств, т.к. содержание графита может быть увеличено только за счет снижения содержания кокса и коксового остатка.

Графит в примерах реализации использован природный, поскольку он привлекателен своей ценой, но может быть использован и искусственный графит.

Как уже сообщалось, при получении вставки осуществляются две дополнительные операции - проведение пропитки и проведение последующего повторного карбонизирующего обжига.

В качестве связующего при изготовлении вставки может быть использован любой карбонизирующийся материал с высоким коксовым остатком - нефтяные и каменноугольные пеки, фенолформальдегидные смолы, полиамидные смолы и пр.

Для некоторых воплощений изобретения наиболее привлекательным является использование высокотемпературных пеков. Использование таких пеков обеспечивает изобретению наиболее оптимальные условия получения материалов, работающих в условиях токоприемников с повышенной плотностью тока вследствие разогрева зоны трения до температур около 1000°С.

В других реализациях изобретения возможным является использование в качестве связующего термореактивных смол. В этом случае улучшаются механические характеристики материала, однако при этом несколько ухудшаются электрические свойства, и выбор связующего зависит от конкретных условий эксплуатации.

Пример реализации изобретения.

Частицы графита марки ЭУЗ или ЭУТ по ГОСТ 10274, кокса марки КПЭ по ГОСТ 3213, связующего - высокотемпературного каменноугольного пека по ГОСТ 1038 и порошок железа по ГОСТ 9849 смешивали в рассчитанных количествах в закрытом вращающемся барабане в течение двух часов со скоростью вращения 60 об/мин.

Затем путем прессования в стальной закрытой форме с усилием 80-120 МПа формовали заготовки вставки прямоугольного сечения 30×30 мм длиной до 1200 мм, после чего заготовки подвергали карбонизирующему обжигу при температуре 1050°С и нормальном атмосферном давлении. Время обжига подбирали таким образом, чтобы получить карбонизованную заготовку с количеством открытых сквозных пор не менее 10 об.%. В примере конкретного выполнения для заготовки вставки прямоугольного сечения 30×30 мм длиной 260 мм время выдержки было 2 часа.

Полученная заготовка с пористостью около 20% пропитывалась тем же пеком при температуре 1200°С и давлении 50 атм в среде азота и подвергалась последующему карбонизирующему обжигу при 1200°С после снятия давления.

Затем из заготовки механической обработкой получали электроконтактную вставку.

Вставка представляет собой брусок длиной 240, 400, 600 или 1200 мм, форма сечения может быть любой, но поверхность основания (подошва) должна быть плоской, а контактная поверхность должна быть либо плоской, либо выпуклой. Основание вставки может представлять собой ласточкин хвост. Преимущество ласточкиного хвоста состоит в удобстве крепления вставки к полозу токоприемника.

Полученную электроконтактную вставку подвергали испытаниям.

Определяли эксплуатационные свойства - удельное электрическое сопротивление, твердость, интенсивность изнашивания при повышенных плотностях тока (>12 А/мм), дугостойкость (потеря объема вставки при однократном воздействии электрической дуги с током 2,5 кА в течение 0,5 с).

Свойства вставки в зависимости от состава материала приведены в таблице 1. Примеры 1-4 соответствуют заявленному техническому решению, примеры 5 и 6 - опытные.

Как следует из представленных данных, предложенная электроконтактная вставка, выполненная в соответствии с предложенным способом обладает следующими преимуществами: пониженным удельным электрическим сопротивлением, повышенной дугостойкостью, пониженной собственной интенсивностью изнашивания и пониженной интенсивностью изнашивания контактного провода.

Таблица 1 №п/п Состав материала вставки, % мас. Потеря объема при дуговом воздействии мм3 УЭС, мкОм·м Твер-
дость,
HS
Интенсивность изнашивания, усл. ед.:
Кокс Железный порошок Графит Кокс. остаток Провод Вставка 1. 10 2,0 60 остальное 42 6 48 1 2,1 2. 50 3,0 25 88 11 65 2,1 1,7 3. 20 5,0 40 61 9 55 1,4 1 4. 40 3,0 12 120 18 72 2,3 2,8 5. 15 1,0 50 53 8 53 3,5 3,8 6. 60 3.0 30 189 10 70 2,5 3,1

Похожие патенты RU2510339C1

название год авторы номер документа
МАТЕРИАЛ ДЛЯ ИЗГОТОВЛЕНИЯ ИЗДЕЛИЙ КОНТАКТНОГО ТОКОСЪЕМА И СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ 2011
  • Гершман Иосиф Сергеевич
  • Пузиков Владимир Яковлевич
RU2470898C1
МАТЕРИАЛ ДЛЯ ИЗГОТОВЛЕНИЯ УСТРОЙСТВ КОНТАКТНОГО ТОКОСЪЕМА И СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ 2010
  • Бучнев Леонид Михайлович
  • Гершман Иосиф Сергеевич
  • Мищенко Виталий Юрьевич
RU2441854C1
СПОСОБ ИЗГОТОВЛЕНИЯ МАТЕРИАЛА НА ОСНОВЕ ГРАФИТА ДЛЯ СКОЛЬЗЯЩИХ ЭЛЕКТРИЧЕСКИХ КОНТАКТОВ И МАТЕРИАЛ 2018
  • Гершман Евгений Иосифович
  • Бучнев Леонид Михайлович
  • Гершман Иосиф Сергеевич
RU2708291C1
МАТЕРИАЛ ДЛЯ ТОКОПРОВОДЯЩИХ КОНТАКТНЫХ ИЗДЕЛИЙ, СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ И ИЗДЕЛИЕ 1998
  • Бучнев Л.М.
  • Гершман И.С.
  • Зинченко С.А.
  • Мищенко В.Ю.
  • Николин М.И.
RU2150444C1
СПОСОБ ИЗГОТОВЛЕНИЯ МАТЕРИАЛА ДЛЯ ДУГОГАСИТЕЛЬНЫХ И РАЗРЫВНЫХ ЭЛЕКТРИЧЕСКИХ КОНТАКТОВ И МАТЕРИАЛ 2013
  • Гершман Иосиф Сергеевич
  • Гершман Евгений Иосифович
RU2522584C1
СПОСОБ ИЗГОТОВЛЕНИЯ ТОКОПРОВОДЯЩИХ КОНТАКТНЫХ ВСТАВОК 2015
  • Кобзарь Роман Владимирович
RU2623292C2
СПОСОБ ИЗГОТОВЛЕНИЯ КОНТАКТНОЙ ВСТАВКИ ТОКОСЪЕМНИКА ЭЛЕКТРОТРАНСПОРТНОГО СРЕДСТВА 2001
  • Васильев Ю.Н.
RU2207962C1
ШИХТА ДЛЯ ИЗГОТОВЛЕНИЯ МАТЕРИАЛА ДЛЯ СИЛЬНОТОЧНЫХ ЭЛЕКТРИЧЕСКИХ КОНТАКТОВ И СПОСОБ ИЗГОТОВЛЕНИЯ МАТЕРИАЛА 2013
  • Гершман Иосиф Сергеевич
  • Гершман Евгений Иосифович
RU2523156C1
ЭЛЕКТРОТЕХНИЧЕСКОЕ ИЗДЕЛИЕ, ИЗГОТОВЛЕННОЕ ИЗ ТОКОПРОВОДЯЩЕГО КОМПОЗИЦИОННОГО МАТЕРИАЛА, И СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ 2014
  • Ерошенко Виктор Дмитриевич
RU2566247C1
СПЕЧЕННЫЙ КОМПОЗИЦИОНЫЫЙ МЕДНО-ГРАФИТОВЫЙ МАТЕРИАЛ И СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ 1995
  • Гершман Иосиф Сергеевич
  • Репников Николай Николаевич
  • Чужко Радий Константинович
  • Тимофеев Анатолий Николаевич
  • Буше Николай Александрович
  • Чернокожев Игорь Иванович
  • Колягин Владимир Анатольевич
  • Кирьянчев Николай Егорович
  • Бельдей Валентин Васильевич
RU2088682C1

Реферат патента 2014 года ТОКОСЪЕМНАЯ ВСТАВКА ТОКОПРИЕМНИКА ЭЛЕКТРОТРАНСПОРТНОГО СРЕДСТВА И СПОСОБ ЕЕ ИЗГОТОВЛЕНИЯ

Изобретение относится к изделиям скользящего контактного токосъема, в частности к токосъемным вставкам для железнодорожного и городского электротранспорта и технологии ее получения. Токосъемная вставка токоприемника электротранспортного средства включает основание и контактную поверхность и выполнена из композиционного материала, содержащего следующие компоненты, мас.%: графит 12,0-60,0, кокс 10,0-50,0, железный порошок 2,0-5,0, коксовый остаток - остальное. Также раскрывается способ изготовления данного материала, предусматривающий смешение всех компонентов, получение заготовки, карбонизующий обжиг заготовки, ее последующую пропитку, повторный карбонизующий обжиг и механическую обработку заготовки с получением вставки. Техническим результатом является снижение удельного электрического сопротивления до значений 10-11 мкОм/м и менее; снижение интенсивности изнашивания при повышенных токах и повышенных скоростях движения, что позволит использовать данную токосъемную вставку для электрифицированного транспорта с повышенными скоростями движения. 2 н. и 3 з.п. ф-лы, 1 табл.

Формула изобретения RU 2 510 339 C1

1. Токосъемная вставка токоприемника электротранспортного средства, включающая основание и контактную поверхность и выполненная из композиционного материала, содержащего графит, кокс, железный порошок и коксовый остаток, отличающаяся тем, что она выполнена из материала, содержащего компоненты при следующем соотношении, мас.%:
Графит 12,0-60,0 Кокс 10,0-50,0 Железный порошок 2,0-5,0 Коксовый остаток остальное

2. Вставка по п.1, отличающаяся тем, что основание выполнено в виде «ласточкиного хвоста».

3. Способ изготовления токосъемной вставки токоприемника электротранспортного средства, отличающийся тем, что осуществляют смешение частиц графита, кокса, связующего и железного порошка, формирование из полученной смеси заготовки, последующий обжиг полученной заготовки при условиях, обеспечивающих карбонизацию связующего с получением коксового остатка, содержащего не менее 10 об.% сквозных пор, последующую пропитку связующим полученной карбонизованной заготовки, повторный обжиг для карбонизации пропитанной заготовки с получением результирующей заготовки и механическую обработку результирующей заготовки с получением вставки.

4. Способ по п.3, отличающийся тем, что в качестве связующего используют высокотемпературный нефтяной или каменноугольный пек.

5. Способ по п.3, отличающийся тем, что пропитку связующим осуществляют под давлением от 40 МПа до 50 МПа в защитной атмосфере.

Документы, цитированные в отчете о поиске Патент 2014 года RU2510339C1

Антифрикционный токопроводящий материал 1975
  • Бельдей Валентин Васильевич
  • Берент Валентин Янович
  • Буше Николай Александрович
  • Зареченский Евгений Трофимович
  • Кольцов Владимир Прохорович
  • Кралин Леонид Александрович
  • Семенов Михаил Евгеньевич
  • Фокин Владимир Петрович
SU567737A1
КОМПОЗИЦИЯ ДЛЯ ИЗГОТОВЛЕНИЯ ТОКОСЪЕМНЫХ КОНТАКТНЫХ ЭЛЕМЕНТОВ 2004
  • Жуковин Сергей Михайлович
RU2274936C1
СПОСОБ ИЗГОТОВЛЕНИЯ МАТЕРИАЛА ДЛЯ ТОКОПРОВОДЯЩИХ КОНТАКТНЫХ ЭЛЕМЕНТОВ 1992
  • Смазнов Петр Петрович
  • Морковин Вячеслав Дмитриевич
  • Белоглазов Владимир Витальевич
  • Реморов Андрей Алексеевич
  • Берент Валентин Янович
RU2075805C1
МАТЕРИАЛ ДЛЯ ИЗГОТОВЛЕНИЯ УСТРОЙСТВ КОНТАКТНОГО ТОКОСЪЕМА И СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ 2010
  • Бучнев Леонид Михайлович
  • Гершман Иосиф Сергеевич
  • Мищенко Виталий Юрьевич
RU2441854C1
МАТЕРИАЛ ДЛЯ ТОКОПРОВОДЯЩИХ КОНТАКТНЫХ ИЗДЕЛИЙ, СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ И ИЗДЕЛИЕ 1998
  • Бучнев Л.М.
  • Гершман И.С.
  • Зинченко С.А.
  • Мищенко В.Ю.
  • Николин М.И.
RU2150444C1
DE 4430745 A1, 09.03.1995.

RU 2 510 339 C1

Авторы

Гершман Иосиф Сергеевич

Гершман Евгений Иосифович

Мельник Михаил Артурович

Даты

2014-03-27Публикация

2012-10-25Подача