СПОСОБ ПОДОГРЕВА КРИОГЕННОЙ ЖИДКОСТИ Российский патент 2014 года по МПК F17C9/02 

Описание патента на изобретение RU2511805C2

Изобретение относится к области теплотехники и может быть использовано в криогенной технике для испарения газообразных сред, находящихся в жидком состоянии, в ракетно-космической технике и в народном хозяйстве, например, для газификации сжиженных газов и их смесей.

Для решения перспективных технических задач возникает необходимость в испарителе-газификаторе с развитой поверхностью нагрева, компактного, простого по конструкции, малой массы, для относительно больших расходов, более 10 кг/с, испаряемого теплоносителя и работоспособного при высоких давлениях, более 10 МПа.

Известен испаритель криогенной жидкости (далее испаритель), содержащий корпус с расположенными в нем концентрично перегородками, змеевик с криогенным продуктом, выполненный из двух частей, одна из которых расположена между корпусом и перегородкой, а другая - между перегородками, электронагреватели, расположенные в центральной части корпуса. Пространство между корпусом и наружной перегородкой заполнено водой, образующей ледяной экран (Авторское свидетельство СССР №932094, МПК F17C 9/02, 1982).

Основными недостатками данного испарителя являются:

- использование воды в устройстве усложняет конструкцию, ограничивает выбор максимальных величин температуры и давления теплоносителя, что в свою очередь приводит к ограничению максимальной тепловой мощности, увеличению общей массы конструкции и увеличению времени выхода устройства на режим и, кроме того, накладывает дополнительные требования по соблюдению герметичности корпуса, а также к чистоте применяемой воды, кроме этого электронагреватели имеют ограниченный срок службы и их наличие приводит к необходимости иметь источник электропитания к ним с аппаратурой управления.

Известен испаритель криогенной жидкости, содержащий корпус, в котором расположены теплообменные элементы, нагреватель, при этом корпус выполнен в виде двухслойных цилиндрических оболочек, образующих кольцевую полость для прохода греющего теплоносителя, каждая из оболочек состоит из двух жестко соединенных между собой цилиндров, между которыми образованы каналы, объединенные в коллекторы для подвода и отвода криогенного продукта, при этом на входе в кольцевую полость закреплена крышка, в которой установлены смесительные элементы и воспламеняющее устройство, а на выходе закреплен газовод (патент РФ №2347972, МПК F17C 9/02, 10.07.2007 - прототип).

Испаритель работает следующим образом.

Испаряемая среда, например криогенная жидкость, подается двумя потоками по подводящим трубам в коллекторы и по каналам внутренней оболочки и наружной оболочки поступает, постепенно испаряясь, к коллекторам, из которых отводится по отводящим трубопроводам в сторону потребителя.

Течение испаряемой среды может осуществляться как «по потоку», так и «противотоком» по отношению к движению греющей среды.

Греющая среда - теплоноситель - продукты сгорания какого-либо горючего, например керосина, спирта, природного газа и т.д., температура которых может достигать от 900К до 2200К (регулируется соотношением расходов компонентов топлива) и лимитируется только свойствами применяемых материалов, движется от огневой стенки крышки в сторону газовода, по пути отдавая тепло испаряемой среде, протекающей по каналам оболочек.

Подготовка компонентов топлива к процессу горения: перемешивание, распыл - осуществляется смесительными элементами, а для воспламенения смеси служит воспламеняющее устройство.

Недостатками данного испарителя является значительная сложность конструкции и сборки, а также значительные габариты и вес, обусловленные принятой компоновкой элементов конструкции испарителя.

Задачей изобретения является устранение указанных недостатков, улучшение технических характеристик и расширение функциональных возможностей испарителя.

Поставленная задача достигается за счет того, что в предложенном способе подогрева криогенной жидкости, заключающийся в пропускании жидкости через теплообменные элементы с подведением к ним тепла, согласно изобретению корпус испарителя криогенной жидкости выполняют в виде, как минимум, двух двухслойных оболочек, наружной и внутренней, с образованием кольцевой полости для прохода греющего теплоносителя, причем каждую из оболочек выполняют состоящей из двух жестко соединенных между собой обечаек, между которыми образуют каналы для прохода криогенного компонента, которые объединяют в коллекторы, при этом на входе в кольцевую полость закрепляют крышку, в которой устанавливают смесительные элементы и воспламеняющее устройство, а на выходе размещают газовод, при этом оболочки корпуса выполняют профилированными с цилиндрической частью и сужающейся частью в виде конфузора, предпочтительно конической, с образованием кольцевой полости с каналами для прохода криогенного компонента между указанными частями, при этом ребра, образующие каналы для прохода криогенного компонента во внутренней оболочке, выполняют на внутренней поверхности цилиндрической части наружной обечайки, а на сужающейся части обечайки указанные ребра выполняют на внешней поверхности внутренней сужающейся части обечайки, причем внутри конической части, предпочтительно в ее центральной зоне, устанавливают патрубок, который соединяют с полостью внутренней оболочки, а коллекторы подвода и отвода криогенного компонента во внутреннюю полость наружной оболочки располагают на упомянутой сужающейся части наружной оболочки, при этом криогенную жидкость подают во внутреннюю полость внутренней оболочки из коллектора, а отводят - через патрубок, установленный в центральной части внутренней оболочки, при этом во внутреннюю полость наружной оболочки криогенную жидкость подают из коллектора, расположенного на сужающейся части наружной оболочки, причем подают таким образом, что заполненные каналы равномерно чередуются с незаполненными, пропускают криогенную жидкость через всю оболочку, затем разворачивают в начальной части цилиндрической оболочки и возвращают к выходному коллектору, расположенному в сужающейся части, через оставшуюся часть каналов.

В варианте применения смесительные элементы выполнят в виде двухкаскадных форсунок, что позволяет проводить генерацию греющего теплоносителя в диапазоне температур от 900К до 2200К.

В варианте применения внутренние цилиндры, со стороны греющего теплоносителя, выполняют из материала с повышенной теплопроводностью, что позволяет повысить величины коэффициента теплоотдачи от греющего теплоносителя к испаряемой среде.

В варианте применения в патрубке газовода устанавливают подвижную опору.

В варианте применения на корпус и газовод наносят теплоизоляция, что позволяет уменьшить потери тепла в окружающее пространство.

В варианте применения коллектор подвода одного из компонентов топлива к смесительным элементам размещают внутри корпуса испарителя, что позволяет уменьшить диаметральные размеры корпуса.

Сущность изобретения иллюстрируется чертежами, где на фиг.1 показан продольный разрез испарителя, на фиг.2 - поперечный разрез А-А цилиндрической части тракта внутренней оболочки, на фиг.3 - поперечный разрез Б-Б конической части тракта внутренней оболочки, на фиг.4 - разрез смесительной головки в варианте исполнения. На фиг.2 и 3 знаком «+» показано движение криогенной жидкости по направлению к смесительной головке, а знаком «+» - от нее.

Предложенный способ может быть реализован при помощи испарителя криогенной жидкости, содержащего корпус 1, который выполнен в виде двух двухслойных оболочек 2 и 3, образующих кольцевую полость 4 для прохода греющего теплоносителя. Каждая из оболочек 2 и 3 состоит из двух жестко соединенных между собой обечаек 5, 6 и 7, 8 соответственно.

Обечайки 5, 6 и 7 ,8 корпуса 1 выполнены профилированными и содержат цилиндрические части 9, 10 и 11, 12 и сужающиеся части 13, 14 и 15, 16 соответственно.

В каждой оболочке 2 и 3 выполнены каналы 17 и 18 соответственно.

Каналы 17 на цилиндрической части 10 оболочки 2 выполнены на внутренней поверхности обечайки 6, а на сужающейся части 13 оболочки 2 - на наружной поверхности указанной части. Между собой обечайки 5, 6 и 13,14 соединены по вершинам ребер, образующим пазы.

Каналы 17 внутренней оболочки 2 соединяются с коллекторами подвода 19 и отвода 20. Каналы 18 наружной оболочки 3 соединяются с коллекторами подвода 21 и отвода 22. На входе в кольцевую полость 4 закреплена крышка 23, в которой установлены смесительные элементы 24 и воспламеняющее устройство 25. На выходе из кольцевой полости 4 установлен газовод 26.

Внутри газовода 26 установлена опора 27 с возможностью скольжения по внутренней цилиндрической части газовода при нагреве или охлаждении различных составных частей конструкции.

На наружной поверхности корпуса 1 установлен коллектор 28 для подвода одного из компонентов топлива к смесительным элементам 24.

Предложенный способ может быть реализован при помощи указанного испарителя следующим образом.

Испаряемую среду, например криогенную жидкость, подают двумя потоками по подводящим трубам в коллекторы 19, 21. Криогенная жидкость по каналам 17 внутренней оболочки 2 и каналам 18 наружной оболочки 3 поступает, постепенно испаряясь, к коллекторам 20, 21, из которых ее отводят по отводящим трубопроводам в сторону потребителя.

Течение испаряемой среды может осуществляться как «по потоку», так и «противотоком» по отношению к движению греющей среды.

Греющая среда - теплоноситель - продукты сгорания какого-либо топлива, например керосина, спирта, природного газа и т.д., температура которых может достигать от 900К до 2200К. Указанную температуру регулируют соотношением расходов компонентов топлива и лимитируют только свойствами применяемых материалов. Продукты сгорания компонентов топлива движутся от огневой стенки крышки 23 в сторону газовода 26, по пути отдавая тепло испаряемой среде, протекающей по каналам 17 и 18 оболочек 2 и 3 соответственно.

Перемешивание и распыл осуществляют смесительными элементами 24, а для воспламенения смеси - устройством 25.

В варианте исполнения коллектор 28 для подвода одного из компонентов топлива к смесительным элементам 24 устанавливают на внутренней поверхности корпуса 1.

Использование предлагаемого изобретения позволит улучшить массово-габаритные характеристики испарителя, упростить его конструкцию и сборку, использовать испаряемую среду, например природный газ, в качестве компонентов топлива при генерации греющего теплоносителя, расширить функциональные возможности испарителя за счет дополнительного использования располагаемого тепла греющего теплоносителя, например для работы привода турбогенератора или нагрева какой-либо дополнительной среды.

Похожие патенты RU2511805C2

название год авторы номер документа
ТРАКТ ИСПАРИТЕЛЯ КРИОГЕННОЙ ЖИДКОСТИ 2012
  • Черниченко Владимир Викторович
  • Рубинский Виталий Романович
  • Стогней Владимир Григорьевич
  • Бараков Александр Валенитинович
RU2529608C2
ИСПАРИТЕЛЬ КРИОГЕННОЙ ЖИДКОСТИ 2012
  • Рубинский Виталий Романович
  • Стогней Владимир Григорьевич
  • Черниченко Владимир Викторович
  • Дубанин Владимир Юрьевич
RU2514802C2
ИСПАРИТЕЛЬ КРИОГЕННОЙ ЖИДКОСТИ 2007
  • Кулешов Александр Александрович
  • Космачева Валентина Петровна
  • Рубинский Виталий Романович
  • Сурин Владимир Павлович
  • Чембарцев Сергей Владимирович
RU2347972C1
ТРАКТ ОХЛАЖДЕНИЯ ТЕПЛООБМЕННОГО АППАРАТА 2012
  • Черниченко Владимир Викторович
  • Рубинский Виталий Романович
  • Солженикин Павел Анатольевич
  • Бараков Александр Валентинович
  • Бокарев Евгений Игоревич
RU2522154C2
ИСПАРИТЕЛЬ КРИОГЕННОЙ ЖИДКОСТИ 2012
  • Черниченко Владимир Викторович
  • Солженикин Павел Анатольевич
  • Рубинский Виталий Романович
  • Дубанин Владимир Юрьевич
RU2561513C2
ИСПАРИТЕЛЬ КРИОГЕННОЙ ЖИДКОСТИ 2012
  • Черниченко Владимир Викторович
  • Солженикин Павел Анатольевич
  • Рубинский Виталий Романович
  • Дубанин Владимир Юрьевич
RU2561223C2
ИСПАРИТЕЛЬ КРИОГЕННОЙ ЖИДКОСТИ 2016
  • Климов Владислав Юрьевич
RU2611225C1
ИСПАРИТЕЛЬ КРИОГЕННОЙ ЖИДКОСТИ 2016
  • Климов Владислав Юрьевич
RU2614552C1
ТЕПЛООБМЕННИК 2014
  • Климов Владислав Юрьевич
RU2567466C1
Способ регазификации жидкости и установка для регазификации жидкости 2018
  • Тонконог Владимир Григорьевич
  • Тукмакова Надежда Алексеевна
  • Тукмаков Алексей Львович
RU2691863C1

Иллюстрации к изобретению RU 2 511 805 C2

Реферат патента 2014 года СПОСОБ ПОДОГРЕВА КРИОГЕННОЙ ЖИДКОСТИ

Изобретение относится к области теплотехники и может быть использовано для испарения сред, находящихся в жидком состоянии. Предложен способ подогрева криогенной жидкости, заключающийся в пропускании жидкости через теплообменные элементы с подведением к ним тепла. Корпус испарителя криогенной жидкости выполняют в виде, как минимум, двух двухслойных оболочек, наружной и внутренней, с образованием кольцевой полости для прохода греющего теплоносителя. Каждую из оболочек выполняют состоящей из двух жестко соединенных между собой обечаек, между которыми образуют каналы для прохода криогенного компонента, которые объединяют в коллекторы. Криогенную жидкость подают во внутреннюю полость внутренней оболочки из коллектора, а отводят через патрубок, установленный в центральной части внутренней оболочки. Во внутреннюю полость наружной оболочки криогенную жидкость подают из коллектора, расположенного на сужающейся части наружной оболочки, причем подают таким образом, что заполненные каналы равномерно чередуются с незаполненными, при этом пропускают криогенную жидкость через всю оболочку, затем разворачивают в начальной части цилиндрической оболочки и возвращают к выходному коллектору, расположенному в сужающейся части, через оставшуюся часть каналов. Технический результат - упрощение конструкции, уменьшение габаритов и веса. 4 з.п. ф-лы, 4 ил.

Формула изобретения RU 2 511 805 C2

1. Способ подогрева криогенной жидкости, заключающийся в пропускании жидкости через теплообменные элементы с подведением к ним тепла, характеризующийся тем, что корпус испарителя криогенной жидкости выполняют в виде, как минимум, двух двухслойных оболочек, наружной и внутренней, с образованием кольцевой полости для прохода греющего теплоносителя, причем каждую из оболочек выполняют состоящей из двух жестко соединенных между собой обечаек, между которыми образуют каналы для прохода криогенного компонента, которые объединяют в коллекторы, при этом на входе в кольцевую полость закрепляют крышку, в которой устанавливают смесительные элементы и воспламеняющее устройство, а на выходе размещают газовод, при этом оболочки корпуса выполняют профилированными с цилиндрической частью и сужающейся частью в виде конфузора, предпочтительно конической, с образованием кольцевой полости с каналами для прохода криогенного компонента между указанными частями, при этом ребра, образующие каналы для прохода криогенного компонента во внутренней оболочке, выполняют на внутренней поверхности цилиндрической части наружной обечайки, а на сужающейся части обечайки указанные ребра выполняют на внешней поверхности внутренней сужающейся части обечайки, причем внутри конической части, предпочтительно в ее центральной зоне, устанавливают патрубок, который соединяют с полостью внутренней оболочки, а коллекторы подвода и отвода криогенного компонента во внутреннюю полость наружной оболочки располагают на упомянутой сужающейся части наружной оболочки, при этом криогенную жидкость подают во внутреннюю полость внутренней оболочки из коллектора, а отводят - через патрубок, установленный в центральной части внутренней оболочки, при этом во внутреннюю полость наружной оболочки криогенную жидкость подают из коллектора, расположенного на сужающейся части наружной оболочки, причем подают таким образом, что заполненные каналы равномерно чередуются с незаполненными, пропускают криогенную жидкость через всю оболочку, затем разворачивают в начальной части цилиндрической оболочки, и возвращают к выходному коллектору, расположенному в сужающейся части, через оставшуюся часть каналов.

2. Способ подогрева по п.1, отличающийся тем, что смесительные элементы выполняют в виде двухкаскадных форсунок.

3. Способ подогрева по п.1, отличающийся тем, что внутренние цилиндры выполняют из материала с повышенной теплопроводностью.

4. Способ подогрева по п.1, отличающийся тем, что в патрубке газовода устанавливают подвижную опору.

5. Способ подогрева по п.1, отличающийся тем, что коллектор подвода одного из компонентов топлива к смесительным элементам размещают внутри корпуса испарителя.

Документы, цитированные в отчете о поиске Патент 2014 года RU2511805C2

ИСПАРИТЕЛЬ КРИОГЕННОЙ ЖИДКОСТИ 2007
  • Кулешов Александр Александрович
  • Космачева Валентина Петровна
  • Рубинский Виталий Романович
  • Сурин Владимир Павлович
  • Чембарцев Сергей Владимирович
RU2347972C1
ИСПАРИТЕЛЬ КРИОГЕННОЙ ЖИДКОСТИ 2002
  • Гущин А.А.
  • Русаков И.Ю.
  • Лазарчук В.В.
  • Хохлов В.А.
RU2239121C2
Способ припайки пластинок из быстрорежущей стали 1939
  • Медведев Б.Г.
SU63486A1
Способ обработки целлюлозных материалов, с целью тонкого измельчения или переведения в коллоидальный раствор 1923
  • Петров Г.С.
SU2005A1
JPH 06221499 A, 09.08.1994
JP 2009209995 A, 17.09.2009

RU 2 511 805 C2

Авторы

Черниченко Владимир Викторович

Рубинский Виталий Романович

Солженикин Павел Анатольевич

Бокарев Евгений Игоревич

Даты

2014-04-10Публикация

2012-02-02Подача