Изобретение относится к медицине, а именно к лучевой диагностике, и может быть использовано для диагностики заболеваний легких с помощью компьютерной томографии.
Известно, что современные способы диагностики и реализуемые с использованием этих способов аппаратурные средства не всегда позволяют достоверно установить природу шаровидного образования легких (ШОЛ), что вызвано наличием сходных черт опухолевых, специфических, неспецифических воспалительных и иных патологических процессов при их визуализации интроскопическими методами.
Известен способ оценки плотности патологических очаговых образований, включающий исследование изображений образований путем денситометрии векселей, то есть объемных элементов, при использовании одного среза в области интереса, состоящей из нескольких векселей в очаговом образовании, выделяя область интереса в ручном режиме с помощью штатного программного обеспечения, последующий анализ на одном срезе патологического очагового образования полученных в автоматическом режиме компьютером параметров средней плотности и величины стандартного отклонения в единицах Хаунсфилда (HU) (Хофер М. Компьютерная томография. Базовое руководство / М.Хофер. - М.: Мед. лит., 2008. - 224 с.; с.15).
Однако точность оценки плотности патологического очагового образования является недостаточной, так как патологическое образование может не заполнять всю толщину среза, а в область сканирования попадают и соседствующие анатомические структуры. Кроме того, посредством описанного способа невозможно оценить внутреннюю структуру ШОЛ и, следовательно, диагностировать заболевание, пользуясь только информацией о средней плотности и стандартном отклонении в одном срезе.
Наиболее близким к заявляемому (прототипом) является способ оценки структуры шаровидных образований легких, включающий исследование изображений шаровидных образований легких с выделением объемов интереса путем автоматизированной дифференциации наружных границ узелкового образования от кровеносных сосудов и стенок грудной клетки при использовании нескольких срезов и анализ полученных в автоматическом режиме компьютером объемных параметров образования - собственно объема в мм3, эффективного диаметра в мм, средней, минимальной, максимальной плотности в единицах Хаунсфилда (HU). В качестве объемов интереса используют наружные границы сегментированного компьютером ШОЛ. Кроме того, анализу могут быть подвергнуты следующие полученные в автоматическом режиме компьютером временные измерения между последним и базовым сканированием: истекшее время в днях, время удвоения в днях, процентное увеличение объема ШОЛ (Руководство пользователя рабочей станции Vitrea® 2, версия 3.9, пакет программного обеспечения анализа легких VPMC-7854B (08/2006). - Компания Vital Images, Inc., 2006. - с.9-19).
Однако этот способ недостаточно точен, так как, во-первых, при автоматизированном выделении наружных границ узелков в зону интереса попадают и не измененные ткани; во-вторых, при наличии участков деструкции и тканевого детрита в узелках гнойно-деструктивные массы существенно искажают полученные параметры образования.
Задачей изобретения является повышение точности оценки внутренней структуры шаровидных образований легких.
Поставленная задача решается тем, что в способе оценки внутренней структуры шаровидных образований легких, включающем исследование изображений шаровидных образований легких с выделением объемов интереса при использовании срезов и анализ полученных параметров, согласно изобретению исследование изображений шаровидных образований легких осуществляют путем объемной денситометрии прицельно внутри шаровидных образований с выделением объемов интереса, в качестве которых используют денситометрические плотности, свободные от участков деструкции и/или от участков кальцинации в выбранном объеме, производят последовательную выборку от среза к срезу в выделенных объемах интереса значений пикселей из файлов в формате DICOM, а анализ полученных параметров распределения денситометрических плотностей проводят как в плоскости среза, так и с учетом различных срезов в выделенном объеме.
Повышение точности оценки внутренней структуры шаровидных образований легких обусловлено осуществлением дифференциальной диагностики посредством прицельной объемной денситометрии внутри ШОЛ, не выходя за его наружные границы, последовательно от среза к срезу, в выбранном объеме с исключением участков деструкции и/или кальцинации, что позволяет проводить дифференциальную диагностику опухолевых, специфических, неспецифических воспалительных и иных патологических процессов легких.
Предложенное изобретение поясняется фотографиями, где на фиг.1 представлены трансверзальный срез А и мультипланарные реконструкции компьютерных томограмм в прямой Б и боковой В проекциях органов грудной клетки больного с шаровидным образованием в верхушечном сегменте верхней доли правого легкого, причем в ШОЛ визуализируются участки деструкции; на фиг.2 - трансверзальный срез А и мультипланарные реконструкции компьютерных томограмм в прямой Б и боковой В проекциях органов грудной клетки больного с шаровидным образованием в верхушечном сегменте верхней доли правого легкого с определением объема интереса, в качестве которого используют денситометрическую плотность, свободную от участков деструкции; на фиг.3 - трансверзальный срез А и мультипланарные реконструкции компьютерных томограмм в прямой Б и боковой В проекциях органов грудной клетки больного с шаровидным образованием в верхушечном сегменте верхней доли правого легкого с определением количества трансверзальных срезов в выбранном объеме; на фиг.4 показано последовательное выделение объемов интереса на трансверзальных срезах №№ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 компьютерных томограмм в шаровидным образованием в верхушечном сегменте верхней доли правого легкого; на фиг.5 представлены трансверзальный срез А и мультипланарные реконструкции компьютерных томограмм в прямой Б и боковой В проекциях органов грудной клетки больного с шаровидным образованием в третьем сегменте верхней доли правого легкого, причем в ШОЛ визуализируются участки кальцинации; на фиг.6 - трансверзальный срез А и мультипланарные реконструкции компьютерных томограмм в прямой Б и боковой В проекциях органов грудной клетки больного с шаровидным образованием в третьем сегменте верхней доли правого легкого с определением объема интереса, в качестве которого используют денситометрическую плотность, свободную от участков кальцинации; на фиг.7 - трансверзальный срез А и мультипланарные реконструкции компьютерных томограмм в прямой Б и боковой В проекциях органов грудной клетки больного с шаровидным образованием в третьем сегменте верхней доли правого легкого с определением количества трансверзальных срезов в выбранном объеме; на фиг.8. показано последовательное выделение объемов интереса на трансверзальных срезах №№ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 компьютерных томограмм в шаровидном образовании в третьем сегменте верхней доли правого легкого; на фиг.9 представлены трансверзальный срез А и мультипланарные реконструкции компьютерных томограмм в прямой Б и боковой В проекциях органов грудной клетки больного с шаровидным образованием во втором сегменте верхней доли правого легкого, причем в ШОЛ визуализируются участки кальцинации и деструкции; на фиг.10 - трансверзальный срез А и мультипланарные реконструкции компьютерных томограмм в прямой Б и боковой В проекциях органов грудной клетки больного с шаровидным образованием во втором сегменте верхней доли правого легкого с определением объема интереса, в качестве которого используют денситометрическую плотность, свободную от участков кальцинации и деструкции; на фиг.11 - трансверзальный срез А и мультипланарные реконструкции компьютерных томограмм в прямой Б и боковой В проекциях органов грудной клетки больного с шаровидным образованием во втором сегменте верхней доли правого легкого с определением количества трансверзальных срезов в выбранном объеме; на фиг.12 показано последовательное выделение объемов интереса на трансверзальных срезах №№ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 компьютерных томограмм в шаровидном образовании во втором сегменте верхней доли правого легкого.
Способ оценки внутренней структуры ШОЛ осуществляется следующим образом. Сначала проводят исследование изображений ШОЛ путем объемной денситометрии прицельно внутри шаровидных образований с выделением объемов интереса, в качестве которых используют денситометрические плотности, свободные от участков деструкции и/или от участков кальцинации в выбранном объеме, при использовании срезов. Затем производят последовательную выборку от среза к срезу в выделенных объемах интереса значений пикселей из файлов в формате DICOM и осуществляют анализ полученных параметров распределения денситометрических плотностей и в плоскости среза, и с учетом различных срезов в выделенном объеме.
Изобретение иллюстрируется следующими примерами.
Пример 1. Способ оценки внутренней структуры ШОЛ, при реализации которого выделяют денситометрическую плотность, свободную от участков деструкции, осуществляется в четыре этапа следующим образом.
I этап. Проводят исследование изображения шаровидного образования 1 в верхушечном сегменте верхней доли правого легкого путем объемной денситометрии прицельно внутри шаровидного образования 1 (фиг.1). В ШОЛ визуализируют участки 2 деструкции. На изображениях - трансверзальных срезах А и мультипланарных реконструкциях компьютерных томограмм в прямой Б и боковой В проекциях органов грудной клетки внутри ШОЛ - определяют объем 3 интереса, в качестве которого используют денситометрическую плотность, свободную от участков деструкции (фиг.2).
II этап. Определяют количество трансверзальных срезов 4 в выбранном объеме (фиг.3 Б, В).
III этап. На трансверзальных срезах компьютерных томограмм последовательно от среза №1 к срезу №10 в выделенных объемах 5 интереса проводят прямую выборку значений пикселей из файлов в формате DICOM (фиг.4).
IV этап. Анализируют распределение денситометрических плотностей, свободных от участков деструкции, как в плоскости среза, так и с учетом различных срезов в выделенном объеме с определением параметров этих распределений, на основании чего судят о патологическом процессе легких.
Аналогичным образом поступают при наличии участков кальцинации.
Пример 2. Способ оценки внутренней структуры ШОЛ, при реализации которого выделяют денситометрическую плотность, свободную от участков кальцинации, осуществляется в четыре этапа следующим образом.
I этап. Проводят исследование изображения шаровидного образования в третьем сегменте верхней доли правого легкого путем объемной денситометрии прицельно внутри шаровидного образования 6 (фиг.5). В ШОЛ визуализируют участки 7 кальцинации. На изображениях - трансверзальных срезах А и мультипланарных реконструкциях компьютерных томограмм в прямой - Б и боковой В проекциях органов грудной клетки внутри ШОЛ - определяют объем 8 интереса, в качестве которого используют денситометрическую плотность, свободную от участков кальцинации (фиг.6).
II этап. Определяют количество трансверзальных срезов 9 в выбранном объеме (фиг.7 Б, В).
III этап. На трансверзальных срезах компьютерных томограмм последовательно от среза №1 к срезу №10 в выделенных объемах 10 интереса проводят прямую выборку значений пикселей из файлов в формате DICOM (фиг.8).
IV этап. Анализируют распределение денситометрических плотностей, свободных от участков кальцинации, как в плоскости среза, так и с учетом различных срезов в выделенном объеме с расчетом параметров этих распределений, на основании чего судят о патологическом процессе легких.
При наличии участков деструкции и кальцинации поступают следующим образом.
Пример 3. Способ оценки внутренней структуры ШОЛ, при реализации которого выделяют денситометрическую плотность, свободную от участков деструкции и кальцинации, осуществляется в четыре этапа следующим образом.
I этап. Проводят исследование изображения шаровидного образования во втором сегменте верхней доли правого легкого путем объемной денситометрии прицельно внутри шаровидного образования 11 (фиг.9). В ШОЛ визуализируют участки 12 кальцинации и участки 13 деструкции. На изображениях - трансверзальных срезах А и мультипланарных реконструкциях компьютерных томограмм в прямой Б и боковой В проекциях органов грудной клетки внутри ШОЛ - определяют объем 14 интереса, в качестве которого используют денситометрическую плотность, свободную от участков кальцинации (фиг.10).
II этап. Определяют количество трансверзальных срезов 15 в выбранном объеме (фиг.11Б, В).
III этап. На трансверзальных срезах компьютерных томограмм последовательно от среза №1 к срезу №10 в выделенных объемах 16 интереса проводят прямую выборку значений пикселей из файлов в формате DICOM (фиг.12).
IV этап. Анализируют распределение денситометрических плотностей, свободных от участков деструкции и кальцинации, как в плоскости среза, так и с учетом различных срезов в выделенном объеме с расчетом параметров этих распределений, на основании чего судят о патологическом процессе легких.
Использование предлагаемого способа оценки внутренней структуры шаровидных образований легких позволяет повысить точность определения их нозологической принадлежности до 98%, избежать применения дополнительных инвазивных, обременительных для больных процедур, сократить сроки диагностики до одной недели.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ДИАГНОСТИКИ ТУБЕРКУЛЕЗА ГРУДИНЫ И РЕБЕР У ДЕТЕЙ | 2009 |
|
RU2413464C2 |
СПОСОБ ИССЛЕДОВАНИЯ ПЛОТНОСТИ ДИСТРАКЦИОННОГО РЕГЕНЕРАТА ПРИ КОМПЬЮТЕРНОЙ ТОМОГРАФИИ | 2004 |
|
RU2289314C2 |
СПОСОБ КОМПЬЮТЕРНОЙ ТОМОГРАФИЧЕСКОЙ ДИАГНОСТИКИ РАКА МОЛОЧНОЙ ЖЕЛЕЗЫ | 2004 |
|
RU2266051C1 |
Способ комплексного исследования объектов судебно-медицинской экспертизы | 2021 |
|
RU2762488C1 |
Способ изготовления предоперационной модели позвоночника у детей с врожденными аномалиями развития и деформациями | 2020 |
|
RU2750415C1 |
СПОСОБ ПРОВЕДЕНИЯ ПЕРФУЗИОННОЙ КОМПЬЮТЕРНОЙ ТОМОГРАФИИ ЛЕГКИХ В ДИФФЕРЕНЦИАЛЬНОЙ ДИАГНОСТИКЕ КОНСОЛИДИРОВАННОЙ ЛЕГОЧНОЙ ТКАНИ | 2024 |
|
RU2825590C1 |
СПОСОБ ДИФФЕРЕНЦИАЛЬНОЙ ДИАГНОСТИКИ ШАРОВИДНЫХ ОБРАЗОВАНИЙ ЛЕГКИХ | 2013 |
|
RU2533738C1 |
СПОСОБ ПЛАНИРОВАНИЯ АНАТОМИЧЕСКИХ СУБЛОБАРНЫХ РЕЗЕКЦИЙ ЛЕГКИХ У БОЛЬНЫХ С ПЕРИФЕРИЧЕСКИМИ ОБЪЕМНЫМИ ОБРАЗОВАНИЯМИ НА ОСНОВЕ КТ-АНГИОПУЛЬМОНОГРАФИИ | 2015 |
|
RU2600282C2 |
СПОСОБ КОМПЬЮТЕРНОЙ ТОМОГРАФИЧЕСКОЙ ДИАГНОСТИКИ РАЗРЫВА ИМПЛАНТА МОЛОЧНОЙ ЖЕЛЕЗЫ | 2008 |
|
RU2364339C1 |
СПОСОБ ОЦЕНКИ СТЕПЕНИ СРАЩЕНИЯ ПЕРЕЛОМОВ ТРУБЧАТОЙ КОСТИ | 2007 |
|
RU2338463C1 |
Изобретение относится к медицине, рентгенологии, пульмонологии и может быть использовано для оценки внутренней структуры шаровидных образований при диагностике заболеваний легких с помощью компьютерной томографии. Проводят исследование изображений шаровидных образований легких при использовании срезов путем объемной денситометрии прицельно внутри шаровидных образований с выделением объемов интереса, в качестве которых используют денситометрические плотности, свободные от участков деструкции и/или от участков кальцинации в выбранном объеме. Производят последовательную выборку от среза к срезу в выделенных объемах интереса значений пикселей из файлов в формате DICOM. Анализ полученных параметров распределения денситометрических плотностей проводят как в плоскости среза, так и с учетом различных срезов в выделенном объеме. Способ обеспечивает точность определения нозологической принадлежности и дифференциальной диагностики заболевания легких до 98%, позволяет избежать дополнительных инвазивных диагностических процедур, сокращая сроки диагностики до одной недели. 12 ил., 3 пр.
Способ оценки внутренней структуры шаровидных образований легких, включающий исследование изображений шаровидных образований легких с выделением объемов интереса при использовании срезов и анализ полученных параметров, отличающийся тем, что исследование изображений шаровидных образований легких осуществляют путем объемной денситометрии прицельно внутри шаровидных образований с выделением объемов интереса, в качестве которых используют денситометрические плотности, свободные от участков деструкции и/или от участков кальцинации в выбранном объеме, производят последовательную выборку от среза к срезу в выделенных объемах интереса значений пикселей из файлов в формате DICOM, а анализ полученных параметров распределения денситометрических плотностей проводят как в плоскости среза, так и с учетом различных срезов в выделенном объеме.
СПОСОБ ДИАГНОСТИКИ РАННИХ ПРИЗНАКОВ ОСТРОГО РЕСПИРАТОРНОГО ДИСТРЕСС-СИНДРОМА | 2000 |
|
RU2168945C1 |
ВАГРАНКА ДЛЯ РАБОТЫ НА НЕФТИ | 1930 |
|
SU21345A1 |
Видоизменение охарактеризованной в пат. № 17294 печи для нагрева металлических слитков с вращающимся кольцевым подом | 1929 |
|
SU20107A1 |
ГЛАГОЛЕВ Н.А | |||
Способ восстановления хромовой кислоты, в частности для получения хромовых квасцов | 1921 |
|
SU7A1 |
Видоизменение прибора с двумя приемами для рассматривания проекционные увеличенных и удаленных от зрителя стереограмм | 1919 |
|
SU28A1 |
Для диагностики и дифференциальной |
Авторы
Даты
2014-05-10—Публикация
2012-07-12—Подача