СПОСОБ ДЛЯ БЕСКОНТАКТНОГО ИЗМЕРЕНИЯ СКОРОСТИ И ПЕРЕМЕЩЕНИЯ ОБЪЕКТА И УСТРОЙСТВО ДЛЯ ЕГО РЕАЛИЗАЦИИ Российский патент 2014 года по МПК G01P3/68 

Описание патента на изобретение RU2518018C2

Изобретение относится к области измерения таких динамических параметров объекта, как скорость и перемещение, и может быть использовано в различных областях, в том числе и в задачах строительства и машиностроения для исследования деформационных характеристик грунтов, моделирования взаимодействия рабочих органов строительных машин с грунтом.

Из существующего уровня техники известен способ измерения скорости объекта (и устройство для его осуществления), использующий пучок когерентного излучения, перемещаемый по линии, параллельной направлению движения объекта с заданной частотой и амплитудой, далее формируют реализации принятых сигналов, синхронизированные с перемещением пучка, и по величине задержки между сигналами определяют мгновенную скорость объекта (RU 2262112, МПК G01P 3/68, C2, опубл. 20.05.2005). Недостатками данного способа являются: соосное расположение элементов устройства для перемещения когерентного излучения и направления движения исследуемого объекта, а также возможность одновременного слежения только за одним объектом.

Также известен способ регистрации быстропротекающих процессов (и устройство для его реализации), сущность которого заключается в том, что выполняют съемку в однокадровом режиме с требуемым для данного процесса исследования временем экспозиций выбранного участка области исследования путем применения электронно-оптической видеокамеры с подсветкой выбранного участка в момент срабатывания регистрирующей аппаратуры, при этом дополнительно осуществляют съемку в однокадровом режиме, по крайней мере, еще одного локального участка области исследования с помощью дополнительной электронно-оптической видеокамеры с источником подсветки данного участка и дополнительно регистрируют теневое изображение выбранных локальных участков области исследования за счет использования рентгеновского излучения, при этом осуществляют покадровую видеосъемку области исследования дополнительной скоростной видеокамерой с длительностью регистрации, соответствующей длительности процесса исследования (RU 2438119, МПК G01N 23/04, C1, опубл. 27.12.2011).

Недостатками данного способа являются: использование нескольких видеокамер для регистрации динамики процесса, причем каждая камера выполняет съемку в однокадровом режиме.

Задачей изобретения является упрощение процесса регистрации динамики процесса, позволяющее производить одновременный анализ динамики различных частей исследуемого объекта и сохранить результаты измерений в наглядной форме в виде отдельных кадров.

Данный технический результат достигается тем, что в способе бесконтактного измерения скорости и перемещения объекта с помощью скоростной видеокамеры исследуемый объект, освещенный источником подсветки области исследования - «осветителем», жестко закрепляют на штоке, перемещающемся по направляющим с горизонтальной меткой, видеокамеру устанавливают по отношению к исследуемому объекту таким образом, чтобы ее оптическая ось была перпендикулярна плоскости движения исследуемого объекта и направлена на горизонтальную метку, а максимальное расстояние Lmax между видеокамерой, установленной на штативе, и исследуемым объектом определяется по формуле:

L max = Δ p f ' 2 2 d д о п К г ,

где

Δp - глубина резко изображаемого пространства, равная размеру исследуемого объекта параллельно оси видеокамеры;

f′ - заднее фокусное расстояние объектива видеокамеры;

dдоп - величина допустимого диаметра кружка нерезкости в плоскости исследуемого объекта;

Кг - диафрагменное число,

максимальное расстояние Smax между осветителем и исследуемым объектом определяют по формуле:

S max = ρ м τ о δ N u cos α 4 π E c L max

где

ρм - коэффициент отражения исследуемого объекта;

τ0 - коэффициент пропускания объектива;

δ - световая отдача осветителя;

Nu - электрическая мощность осветителя;

α - угол, образованный нормалью к плоскости освещения с направлением на осветитель;

Ес - чувствительность сенсора видеокамеры, одновременно с началом движения исследуемого объекта включают видеокамеру, которая покадрово фиксирует перемещение делений мерной линейки относительно горизонтальной метки, сравнивают значения делений мерной линейки, совпадающих с горизонтальной меткой, на следующих друг за другом кадрах, и, учитывая перемещение исследуемого объекта Δh и скорость видеосъемки n, рассчитывают скорость V исследуемого объекта по формуле:

V=Δh·n,

где

Δh - перемещение исследуемого объекта; n - скорость видеосъемки.

Значение максимального расстояния Lmax между видеокамерой, установленной на штативе, и исследуемым объектом получаем, используя следующие величины.

Величину допустимого диаметра кружка нерезкости dдоп в плоскости объекта наблюдения определяем требованиями точности определения линейных размеров объекта наблюдения dm:

d д о п d m ( 1 )

Поскольку объектом съемки является пространственная модель, имеющая линейные ортогональные размеры съемки, то для гарантированной регистрации движения всех точек объекта съемки необходимо обеспечить в процессе экспериментальных исследований выполнение условия (1). Соблюдение этого требования должна обеспечить соответствующая величина глубины резкости изображаемого пространства (РИП) Δp:

Δ p = p з а д p п е р , ( 2 )

где

pзад - расстояния до задней границы РИП, м;

pпер - расстояния до передней границы РИП, м.

Расстояния до задней границы РИП pзад определяют по формуле [Проектирование фото- и киноприборов. / С.В.Кулагин, Е.М.Апарин. - М.: Машиностроение, 1986. - 280 с., стр.55]:

p з а д = D f ' p н а в D f ' ( p н а в f ' ) d д о п D f ' p н а в D f ' p н а в d д о п , ( 3 )

где D - диаметр входного зрачка объектива, м;

f′ - заднее фокусное расстояние, м;

pнав - расстояние от плоскости входного зрачка до плоскости наводки, м.

Расстояния до передней границы РИП pпер определяют по формуле [Проектирование фото- и киноприборов. / С.В.Кулагин, Е.М.Апарин. - М.: Машиностроение, 1986. - 280 с., стр.55]:

p п е р = D f ' p н а в D f ' + ( p н а в f ' ) d д о п D f ' p н а в D f ' + p н а в d д о п ( 4 )

Таким образом, подставляя формулы (3) и (4) в уравнение (2), глубину РИП можно определить с помощью следующей приближенной формулы:

Δ p = p з а д p п е р 2 p н а в 2 d д о п D f ' ( 5 )

Поскольку регистрацию ударного воздействия модели на грунт предполагается производить с расстояния, исключающего повреждение объектива и видеокамеры частицами грунта и обеспечивающего минимальное вибрационное воздействие удара на процесс съемки, то с достаточной степенью точности можно принять следующее условие:

p н а в l н а б л , ( 6 )

где lнабл - расстояние наблюдения от передней поверхности объектива видеокамеры до объекта съемки, м.

С учетом вышесказанного глубина РИЛ равна:

Δ p = 2 l н а б л 2 d д о п D f ' ( 7 )

Как правило, все объективы снабжены диафрагмой - устройством для регулировки относительного отверстия, которое позволяет изменять количество проходящего через объектив света, а также устанавливать необходимую глубину резкости, то есть регулировать глубину РИП. Поэтому с учетом равенства [Вычислительная оптика: Справочник / М.М.Русинов, А.П.Грамматин, П.Д.Иванов и др. Под общ. Ред. М.М.Русинова. - Л.: Машиностроение. Ленингр. отд., 1984. - 423 с., стр.5]:

1 К г = D f ' , ( 8 )

где Кг - диафрагменное число, уравнение (7) будет иметь следующий вид:

Δ p = 2 l н а б л 2 d д о п К г f ' 2 . ( 9 )

Таким образом, максимальное расстояние наблюдения Lmax можно рассчитать по формуле:

L max = Δ p f ' 2 2 d д о п К г

где

Δp - глубина резко изображаемого пространства, равная размеру исследуемого объекта параллельно оси видеокамеры;

f′ - заднее фокусное расстояние объектива видеокамеры;

dдоп - величина допустимого диаметра кружка нерезкости в плоскости исследуемого объекта;

Кг - диафрагменное число.

Для обеспечения нормальных условий работы скоростной видеокамеры необходимо обеспечить освещенность E ее сенсора не меньше пороговой величины Ес, указанной в паспорте:

E E c ( 11 )

Освещенность E сенсора видеокамеры можно определить по формуле [Вычислительная оптика: Справочник / М.М.Русинов, А.П.Грамматин, П.Д.Иванов и др. Под общ. Ред. М.М.Русинова. - Л.: Машиностроение. Ленингр. отд-ние, 1984. - 423 с., стр.91]:

E = ρ м τ о J cos α r 2 , ( 12 )

где ρм - коэффициент отражения исследуемого объекта;

τ0 - коэффициент пропускания объектива скоростной видеокамеры;

J - сила света источника, кд;

α - угол, образованный нормалью к плоскости освещения с направлением на источник, град.;

r - расстояние от источника света до сенсора видеокамеры вдоль ее оптической оси, м.

Силу света источника J рассчитывают по формуле [Инженерная оптика / И.Л.Сакин. - Л.: Машиностроение. Ленингр. отд-ние, 1976. - 288 с, стр.134]:

J = Ф u 4 π , ( 13 )

где Фu - световой поток, создаваемый источником освещения, лм;

π - математическая константа, π=3,14159…

Значения светового потока для различных источников приводят в их паспортах. При отсутствии паспортных данных на данный источник его световой поток можно определить, умножая значение световой отдачи δ на величину электрической мощности Nu источника излучения [Справочник по элементарной физике. / Н.И.Кошкин, М.Г.Ширкевич. - 8-е изд. перераб. - М.: Наука. Главная редакция физико-математической литературы, 1980. - 208 с., стр.173].

Ф u = δ N u ( 14 )

Расстояние r от источника до сенсора видеокамеры вдоль ее оптической оси равно: r = L max + s о с в . , ( 15 )

где Lmax - максимальное расстояние между видеокамерой и объектом наблюдения, м;

Sосв - расстояние от источника света до освещаемого объекта, м.

С учетом уравнений (13)-(15) уравнение (12) будет иметь следующий вид:

E = ρ м τ о δ N u cos α 4 π ( L max + s о с в . ) 2 ( 16 )

Таким образом, максимальное расстояние Smax между осветителем и исследуемым объектом определяют по формуле:

S max = ρ м τ о δ N u cos α 4 π E c L max

где

ρм - коэффициент отражения исследуемого объекта;

τ0 - коэффициента пропускания объектива;

δ - световая отдача осветителя;

Nu - электрическая мощность осветителя;

π - математическая константа, π=3,14159…;

α - угол, образованный нормалью к плоскости освещения с направлением на осветитель;

Ес - чувствительность сенсора видеокамеры.

Одновременно с началом движения исследуемого объекта включают видеокамеру, которая покадрово фиксирует перемещение делений мерной линейки относительно горизонтальной метки, сравнивают значения делений мерной линейки, совпадающих с горизонтальной меткой, на следующих друг за другом кадрах, и, учитывая перемещение исследуемого объекта Δh и скорость видеосъемки n, рассчитывают скорость V исследуемого объекта по формуле:

V=Δh·n,

где

Δh - перемещение исследуемого объекта;

n - скорость видеосъемки.

Так как в экспериментальных исследованиях используется песок средней крупности (грунт) со средним размером частиц 0,38 мм, то регистрацию перемещения частиц грунта под действием внешней силы планируется выполнять с точностью до dm=dдоп=0,1 мм. Коэффициент отражения песка (отношение отраженной энергии к падающей на объект энергии) зависит от его дисперсности и увеличивается от 0,4 до 0,8 с уменьшением размера частиц. Для песка средней крупности принимаем ρм=0,4.

Для видеосъемки предлагается использовать скоростную видеокамеру ТМС-6740 GE. Чувствительность сенсора видеокамеры ТМС-6740 GE равна Ес=1,4 лк.

Совместно с камерой предлагается использовать объектив Navitar DO-5095, который имеет следующие основные характеристики:

- фокусное расстояние f′=50 мм;

- диафрагменное число Кг=0,95÷16;

- угловое поле в пространстве предметов 2ω(H×V)=14°36′×11°00′;

- коэффициента пропускания τo=0,785.

Диафрагменное число объектива примем равным Кг=5. Глубину РИП примем равной диаметру основания объекта съемки - конической модели - Δp=45 мм.

В качестве источника света предлагается использовать лампу накаливания Б220-230-100 (ГОСТ Р МЭК 60064-99) мощностью Nu=100 Вт со световой отдачей δ = 13,8 л м В т . Для удобства работы и с целью предотвращения прямой засветки видеокамеры отраженным от светопрозрачного экрана светом источник освещения разместим под углом 45° к месту наблюдения - α=45°.

Тогда максимальное расстояние Lmax между видеокамерой, установленной на штативе, и исследуемым объектом будет равно:

L max = Δ p f ' 2 2 d д о п К г = 45 50 2 2 0,1 5 = 335 м м = 0,335 м

Максимальное расстояние Smax между осветителем и исследуемым объектом будет равно:

S max = ρ м τ о δ N u cos α 4 π E c L max = = 0,4 0,785 13,8 100 cos 45 4 π 1,4 0,335 3,84 м

На фиг.1 изображена схема устройства для бесконтактного измерения скорости и перемещения объекта.

Для реализации способа бесконтактного измерения скорости и перемещения объекта с помощью скоростной видеокамеры исследуемый объект 1 с мерной линейкой 2 с делениями жестко закреплен на штоке 3 с возможностью перемещения в вертикальной плоскости в направляющих 4.

На направляющих 4 жестко закреплена горизонтальная метка 5, перекрывающая деления мерной линейки 2 на величину Δ. На расстоянии Lmax от оси исследуемого объекта 1 расположена видеокамера 6, установленная на штативе 7. Для освещения исследуемого объекта 1 используется источник подсветки области исследования «осветитель» 8, расположенный на расстоянии Smax от исследуемого объекта 1 под углом α, образованным нормалью к плоскости освещения, совпадающей с оптической осью видеокамеры, и направлением на «осветитель» 8.

Рассмотрим конкретный пример реализации предлагаемого способа. На расстоянии Lmax от исследуемого объекта 1 устанавливают видеокамеру 6 так, чтобы ее оптическая ось была перпендикулярна плоскости движения исследуемого объекта 1 и направлена на горизонтальную метку 5. На расстоянии Smax от исследуемого объекта устанавливают «осветитель» 8 под углом α к оптической оси видеокамеры 6. Одновременно с началом движения исследуемого объекта 1 включают видеокамеру 6, которая покадрово фиксирует перемещение в поле зрения видеокамеры 6 относительно горизонтальной метки 5 делений мерной линейки 2, жестко связанной штоком 3 с исследуемым объектом 1. После окончания покадровой видеосъемки сравнивают значения делений мерной линейки 2, совпадающих с горизонтальной меткой 5, на следующих друг за другом кадрах и рассчитывают текущее перемещение Δh исследуемого объекта 1 за промежуток времени, равный смене одного кадра другим. Учитывая перемещение Δh исследуемого объекта 1 от кадра к кадру и скорость видеосъемки n, рассчитывают скорость V исследуемого объекта 1.

Таким образом, использование предлагаемого изобретения позволяет усовершенствовать процесс регистрации динамики процесса и позволяет производить одновременный анализ динамики различных частей исследуемого объекта и сохранить результаты измерений в наглядной форме в виде отдельных кадров.

Похожие патенты RU2518018C2

название год авторы номер документа
СПОСОБ ОБРАБОТКИ ИЗОБРАЖЕНИЯ 2013
  • Грузин Андрей Васильевич
  • Грузин Владимир Васильевич
  • Кучеренко Максим Валерьевич
RU2534962C2
СПОСОБ СКАНИРОВАНИЯ ИЗОБРАЖЕНИЙ МИКРОРЕЛЬЕФА БОКОВЫХ ПОВЕРХНОСТЕЙ СТРЕЛЯНЫХ ПУЛЬ И ГИЛЬЗ И УСТРОЙСТВО СКАНИРОВАНИЯ ИЗОБРАЖЕНИЙ СТРЕЛЯНЫХ ПУЛЬ И ГИЛЬЗ АВТОМАТИЗИРОВАННОГО БАЛЛИСТИЧЕСКОГО ИДЕНТИФИКАЦИОННОГО КОМПЛЕКСА 2006
  • Сорокин Александр Васильевич
  • Шалимов Виталий Петрович
RU2315353C1
СПОСОБ ИЗМЕРЕНИЯ ЦВЕТА ОБЪЕКТОВ (ВАРИАНТЫ) И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ (ВАРИАНТЫ) 2005
  • Головков Олег Леонидович
  • Иванищев Константин Васильевич
RU2312314C2
СПОСОБ И УСТРОЙСТВО ОПРЕДЕЛЕНИЯ КООРДИНАТ ОБЪЕКТОВ 2012
  • Вишняков Сергей Михайлович
  • Давыденко Антон Сергеевич
  • Митянин Александр Геннадьевич
  • Смирнов Павел Леонидович
  • Терентьев Андрей Викторович
  • Царик Олег Владимирович
  • Шепилов Александр Михайлович
  • Шишков Александр Яковлевич
RU2513900C1
Стереодисплей (варианты), видеокамера для стереосъёмки и способ компьютерного формирования стереоизображений для этого стереодисплея 2017
  • Арсенич Святослав Иванович
RU2698919C2
СПОСОБ ОПРЕДЕЛЕНИЯ УПРУГОГО ПРОГИБА ЖЕЛЕЗНОДОРОЖНЫХ РЕЛЬСОВ 2006
  • Гавриленко Александр Константинович
  • Аккерман Геннадий Львович
RU2319803C1
СПОСОБ И УСТРОЙСТВО ВИДЕОНАБЛЮДЕНИЯ 2009
  • Саликов Александр Анатольевич
RU2436255C2
СПОСОБ КОЛИЧЕСТВЕННОЙ ОЦЕНКИ ПРОФИЛЯ И СОСТАВА ПРИТОКА В МАЛОДЕБИТНЫХ ОБВОДНЕННЫХ НЕФТЯНЫХ СКВАЖИНАХ 2018
  • Ипатов Андрей Иванович
  • Кременецкий Михаил Израилевич
  • Лазуткин Дмитрий Михайлович
  • Масленникова Юлия Сергеевна
RU2724814C2
СПОСОБ ИЗМЕРЕНИЯ СРЕДНЕЙ ДИСПЕРСИИ СВЕТА И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2014
  • Пеньковский Анатолий Иванович
RU2563310C2
СИСТЕМА ИМПУЛЬСНОЙ ЛАЗЕРНОЙ ЛОКАЦИИ 2019
  • Алексеев Валерий Львович
  • Горячкин Дмитрий Алексеевич
  • Грязнов Николай Анатольевич
  • Купренюк Виктор Иванович
  • Молчанов Андрей Олегович
  • Романов Николай Анатольевич
  • Соснов Евгений Николаевич
RU2717362C1

Иллюстрации к изобретению RU 2 518 018 C2

Реферат патента 2014 года СПОСОБ ДЛЯ БЕСКОНТАКТНОГО ИЗМЕРЕНИЯ СКОРОСТИ И ПЕРЕМЕЩЕНИЯ ОБЪЕКТА И УСТРОЙСТВО ДЛЯ ЕГО РЕАЛИЗАЦИИ

Изобретение относится к области измерения таких динамических параметров объекта, как скорость и перемещение. Исследуемый объект, освещенный осветителем, закрепляют на штоке, перемещающемся по направляющим с горизонтальной меткой. Видеокамеру устанавливают по отношению к исследуемому объекту таким образом, чтобы ее оптическая ось была перпендикулярна плоскости движения исследуемого объекта и направлена на горизонтальную метку. Одновременно с началом движения исследуемого объекта включают видеокамеру, которая покадрово фиксирует перемещение делений мерной линейки относительно горизонтальной метки, сравнивают значения делений мерной линейки, совпадающих с горизонтальной меткой, на следующих друг за другом кадрах и, учитывая перемещение исследуемого объекта и скорость видеосъемки, рассчитывают скорость исследуемого объекта. Изобретение позволяет усовершенствовать процесс регистрации динамики процесса и позволяет производить одновременный анализ динамики различных частей исследуемого объекта и сохранить результаты измерений в наглядной форме в виде отдельных кадров. 2 н.п. ф-лы, 1 ил.

Формула изобретения RU 2 518 018 C2

1. Способ бесконтактного измерения скорости и перемещения объекта с помощью скоростной видеокамеры заключается в том, что исследуемый объект, освещенный осветителем, закрепляют на штоке, перемещающемся по направляющим с горизонтальной меткой, видеокамеру устанавливают по отношению к исследуемому объекту таким образом, чтобы ее оптическая ось была перпендикулярна плоскости движения исследуемого объекта и направлена на горизонтальную метку, а максимальное расстояние Lmax между видеокамерой, установленной на штативе, и исследуемым объектом определяется по формуле:
L max = Δ p f ' 2 2 d д о п К г
где
Δp - глубина резко изображаемого пространства, равная размеру исследуемого объекта параллельно оси видеокамеры;
f′ - заднее фокусное расстояние объектива видеокамеры;
dдоп - величина допустимого диаметра кружка контрастности в плоскости исследуемого объекта;
Кг - диафрагменное число,
а максимальное расстояние Smax между осветителем и исследуемым объектом определяют по формуле:
S max = ρ м τ о δ N u cos α 4 π E c L max
где
ρм - коэффициент отражения исследуемого объекта;
τ0 - коэффициента пропускания объектива;
δ - световая отдача осветителя;
Nu - электрическая мощность осветителя;
α - угол, образованный нормалью к плоскости освещения с направлением на осветитель;
Eс - чувствительность сенсора видеокамеры,
одновременно с началом движения исследуемого объекта включают видеокамеру, которая покадрово фиксирует перемещение делений мерной линейки относительно горизонтальной метки, сравнивают значения делений мерной линейки, совпадающих с горизонтальной меткой, на следующих друг за другом кадрах, и, учитывая перемещение исследуемого объекта Δh и скорость видеосъемки n, рассчитывают скорость V исследуемого объекта по формуле:
V=Δh·n,
где
Δh - перемещение исследуемого объекта;
n - скорость видеосъемки.

2. Устройство для бесконтактного измерения скорости и перемещения объекта с помощью скоростной видеокамеры, включающее видеокамеру, источник подсветки области исследования - «осветитель» и исследуемый объект, отличающееся тем, что исследуемый объект жестко закреплен на штоке с мерной линейкой с возможностью перемещения в вертикальной плоскости в направляющих, на которых жестко закреплена горизонтальная метка, перекрывающая деления мерной линейки на величину Δ, видеокамера устройства установлена на расстоянии Lmax от оси исследуемого объекта на штативе, а источник подсветки области исследования - «осветитель» расположен на расстоянии Smax от исследуемого объекта под углом α, образованным нормалью к плоскости освещения, совпадающей с оптической осью видеокамеры, и направлением на «осветитель».

Документы, цитированные в отчете о поиске Патент 2014 года RU2518018C2

СПОСОБ РЕГИСТРАЦИИ БЫСТРОПРОТЕКАЮЩИХ ПРОЦЕССОВ И УСТРОЙСТВО ДЛЯ ЕГО РЕАЛИЗАЦИИ 2010
  • Базаров Юрий Борисович
  • Глушихин Вадим Валерьевич
  • Жиембетов Амангельды Кулимович
  • Лобастов Сергей Александрович
  • Осипов Роберт Степанович
  • Цыганов Вячеслав Александрович
RU2438119C1
СПОСОБ ИЗМЕРЕНИЯ СКОРОСТИ ОБЪЕКТА И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2003
  • Данилевский Леонид Николаевич
  • Данилевский Сергей Леонидович
  • Зайцев Александр Иванович
  • Лешкевич Сергей Владимирович
  • Москалик Борис Федорович
  • Таурогинский Бронислав Иванович
RU2262112C2
СПОСОБ ОПРЕДЕЛЕНИЯ СКОРОСТИ ТРАНСПОРТНОГО СРЕДСТВА 2010
  • Зарубин Юрий Леонидович
  • Убоженко Николай Витальевич
  • Стукалов Дмитрий Анатольевич
  • Вовк Максим Анатольевич
  • Аистов Алексей Анатольевич
RU2442218C1
Устройство для измерения скорости перемещения объекта 1977
  • Журавлев Олег Анатольевич
  • Федосова Лидия Ивановна
SU654906A1
US 6992756 B1, 31.01.2006
УСТРОЙСТВО КОДИРОВАНИЯ НА ПОВЕРХНОСТНЫХ АКУСТИЧЕСКИХ ВОЛНАХ ДЛЯ ПАССИВНОГО ТРАНСПОНДЕРА 2004
  • Забузов Сергей Александрович
  • Ларионов Сергей Михайлович
  • Михеев Владимир Григорьевич
  • Головин Сергей Анатольевич
  • Тюлин Андрей Евгеньевич
  • Тикменов Василий Николаевич
  • Марков Николай Яковлевич
RU2270517C1
WO 2011089893 A1, 28.07.2011
JP 62201365 A, 05.09.1987

RU 2 518 018 C2

Авторы

Грузин Андрей Васильевич

Грузин Владимир Васильевич

Кучеренко Максим Валерьевич

Катунин Александр Владимирович

Даты

2014-06-10Публикация

2012-08-22Подача