СПОСОБ ИММОБИЛИЗАЦИИ ЖИДКИХ РАДИОАКТИВНЫХ ОТХОДОВ Российский патент 2014 года по МПК G21F9/16 

Описание патента на изобретение RU2518501C2

Изобретение относится к области охраны окружающей среды, а именно к области переработки жидких радиоактивных отходов, их изоляции, а также может быть использовано в технологии переработки нерадиоактивных промышленных отходов.

Наиболее эффективно заявляемое изобретение может быть использовано в процессе переработки жидких радиоактивных отходов (ЖРО) атомных электростанций (АЭС) и токсичных промышленных отходов с целью максимального сокращения объемов отходов и их концентрирования в твердой фазе, что обеспечивает надежную локализацию радиоактивных и вредных химических веществ от окружающей среды. Предлагаемый способ иммобилизации жидких радиоактивных отходов может оказаться полезным и на стадии вывода АЭС из эксплуатации, и в случае возникновения аварийных ситуаций на объектах атомной и химической промышленности.

В настоящее время известно много способов переработки жидких радиоактивных отходов и нерадиоактивных промышленных отходов.

Способы переработки отходов (включая их предварительную очистку) базируются на использовании самых разнообразных физико-химических процессов.

Выбор того или иного процесса переработки отходов (или их комбинаций) обусловлен необходимостью добиться максимального снижения объема отходов и одновременно обеспечить их надежную изоляцию от окружающей среды.

Для решения задачи переработки отходов ЖРО на АЭС используется комбинация традиционных систем и методов упаривания, осаждения и ионного обмена. (Копылов А.С., Верховский Е.И. Спецводоочистка на атомных электростанциях. - М.: Высшая школа, 1988. - 208 с.)

Глубокое упаривание применяется для дополнительного концентрирования кубовых остатков. Наряду с целым рядом достоинств следует отметить, что использование процесса упаривания накопленных ЖРО позволит сократить их объем не более чем в 2-3 раза.

Осадительные методы являются достаточно традиционными для организации процессов переработки радиоактивных отходов различного происхождения. Вместе с тем применительно к российским АЭС эти методы практически не применимы из-за присутствия в растворах ряда лигандов, в первую очередь - оксалат и ЭДТА-ионов, а также ПАВ.

Процесс ионообменной очистки радиоактивных концентратов АЭС в основном применяется для глубокой очистки от радионуклидов 134,137Cs. (В литературе этот процесс носит наименование «цезий селективной сорбции».)

Помимо решения задачи сокращения объемов любой категории отходов, конечной целью технологии переработки является обеспечение минимального выхода радиоактивных и токсичных веществ в окружающую среду.

При выборе материалов, пригодных для безопасного удаления радиоактивных нуклидов из биосферы, основное внимание уделяется их химической устойчивости.

Многочисленные исследования различных матриц (цементов, битумов, керамик, полимеров, стеклоподобных материалов и др.) показали, что цемент - наиболее универсальный материал для отверждения радиоактивных растворов категорий НАО и САО. (Соболев И.А. и др. Практика производственного цементирования жидких радиоактивных отходов на экспериментальной установке. - Сб. докладов научно-технической конференции специалистов стран СЭВ. Исследования в области обработки и захоронения радиоактивных отходов, ГДР, 1967, М., 1968, с.306-315. Stabilization of High Salt Waste Using a Cementations Process Salt Containing Mixed Waste Treatment. OST/TMS ID 1683 Mixed Waste Focus Area Demonstrated at Oak Ridge National Laboratory (ORNL) Oak Ridge, Tennessee.)

Известен способ переработки радиоактивных илов и донных отложений. (Патент Российской Федерации №2249867. Опубликовано: 10.04.2005.) Способ включает получение радиоактивного осадка и фильтрата. Затем осуществляется нагрев обезвоженного радиоактивного осадка и измельчение. Далее измельченные куски цементируют высокопроникающим цементным раствором при весовом соотношении жидкая фаза - цемент 0,6-1,4. Преимуществом изобретения является снижение объема отходов, повышение радиационной безопасности и снижение энергоемкости процесса.

Согласно способу цементирования радиоактивных отходов (Патент Российской Федерации №2315380. Опубликовано 20.01.2008) после затвердевания радиоактивного цементного компаунда свободный объем контейнера заполняют нерадиоактивным защитным покрытием на основе минерального связующего.

Основным недостатком операции цементирования жидких радиоактивных отходов является необходимость проводить операцию нейтрализации кислых растворов, которые не могут быть включены в цемент.

Введение специальных добавок, как и совмещение процесса цементирования и адсорбции, неизбежно приводит к значительному росту объема отвержденных продуктов, которые направляются на захоронение.

Известен способ иммобилизации ЖРО с использованием разнообразных полимерных материалов с образованием химически устойчивых продуктов. (Technical report series No 289. MANAGEMENT OF LOW AND INTERMEDIATE LEVEL RADIOACTIVE WASTES WITH POLYMERS. International Atomic Energy Agency, Vienna (1988).)

В литературе известен способ отверждения ЖРО в матрицу кремнийорганического эластомера (ЭКОР). (С.Т.Беляев, И.К.Швецов, Б.С.Калиниченко и другие. Новый материал для обращения с радиоактивными отходами. Тезисы докладов. Пятая Российская конференция по радиохимии РАДИОХИМИЯ - 2006.)

Недостатком данного способа является несовместимость материала с растворами кислот. Нейтрализация кислых ЖРО не только приводит к увеличению объема отходов, но и вызывает появление осадков и взвесей, для удаления которых требуется дополнительное оборудование (фильтры) и проведение дополнительных операций по обращению с осадками.

Известен способ утилизации радиоактивных отходов путем их отверждения и получения материала, пригодного для захоронения (Патент США 4056362, опубл. 01.11.1977). Жидкие радиоактивные отходы (ЖРО) смешиваются с реагентами, способными образовывать твердые продукты с образованием химически устойчивых продуктов.

В качестве отверждающего агента используется частично полимеризованная водная эмульсия мочевины и формальдегида (мочевиноформальдегидная смола, МФ). В качестве катализатора для стимуляции полимеризации используется водный раствор бисульфата натрия.

Недостатком данного способа являются ограничения номенклатуры отходов, которые могут быть переработаны, поскольку данный способ не применим к растворам с высокой кислотностью и некоторые типы отходы, например мыльные растворы и концентрированный раствор Na2S04, трудно смешать с МФ-смолами.

Наиболее близким к заявляемому изобретению является способ утилизации радиоактивных отходов путем их отверждения с использованием полимеров, которые производит фирма Nochar (Nochar® Corp., USA), и получением продуктов, пригодных для захоронения. Иммобилизацию ЖРО проводят путем смешения жидких РАО с полимером при перемешивании. Полученный продукт, не содержащий жидкой фазы, сушится и направляется на долговременное хранение. ("Nochar Petrobond Absorbent Polymer, Tritiated Oil So-Udification", Innovative Technology Summary Report, DOE/EM-0598, U.S. Department of Energy.) Данный способ по своей технической сущности и достигаемому эффекту наиболее близок к заявляемому и выбран в качестве прототипа.

Недостатком данного способа является увеличение объема образующихся твердых отходов значительно по сравнению с первоначальным объемом ЖРО, что в свою очередь приводит к увеличению требуемых объемов хранилища и, соответственно, к неоправданному росту капитальных затрат.

Задача, решаемая предлагаемым изобретением, заключается в сокращении объема образующихся твердых и необходимого количества полимерных материалов.

Для достижения такого технического результата в предлагаемом способе проводится смешение ЖРО с полимерным материалом и отверждение отходов. После чего проводится сушка полученной композиции и добавляется новая порция ЖРО к уже отвержденному материалу. (Количество проводимых циклов (повторения операций "отверждение ЖРО - сушка") ограничивается только удельной активностью и солесодержанием ЖРО.)

Способ осуществляют следующим образом.

1 мас.ч. радиоактивного раствора смешивают с 0,05-0,5 мас.ч. полимерного материала и при этом происходит отверждение исходной смеси. Через 10-30 суток хранения после удаления основной массы воды к отвержденным продуктам добавляют новую порцию ЖРО и повторяют сушку продукта.

Время выдержки (сушки) выбирается в зависимости от выбранного полимерного материала и условий хранения. Если сушка проводится при комнатной температуре, то минимальное время выдержки отвержденной композиции перед добавлением следующей порции составляет не менее 5-10 дней.

При наличии возможности проводить высушивание отвержденного материала при повышенной температуре (и под разряжением) время выдержки перед добавлением следующей порции раствора сокращается до 2-5 дней.

После проведения нескольких операций "отверждение - сушка" проводится окончательная изоляция отходов в контейнере и их транспортирование в хранилище в виде твердых отходов.

По сравнению с прототипом достигается иммобилизация самых разнообразных по составу растворов без какой-либо подготовки и сокращение объема отходов, направляемых на хранение.

В числе других преимуществ заявляемого способа следует указать на сокращение числа технологических стадий по сравнению с традиционными технологиями и на возможность срочной локализации отходов в случае возникновения аварийных ситуаций на объектах атомной и химической промышленности.

Вышеизложенное иллюстрируется, но не ограничивается следующими примерами.

Пример 1

К 50 мл модельного радиоактивного раствора добавили 17,8 г твердого полимера -гидрогеля "Штокосорб" (Производитель - Германия, http://my.mail.ni/community/gidrogel). Соотношение массы полимера (Т) к массе раствора (Ж) составило приблизительно Т:Ж-1:3,9. Отверждение раствора прошло в течение 2-3 минут, и полученная композиция выдерживалась на воздухе при комнатной температуре в течение 42 дней. Потеря массы воды составила 92% от исходной.

После этого к отвержденному и высушенному продукту добавляют новую порцию модельного раствора (45 мл) того же состава и повторяют сушку отвержденной композиции в течение 40 дней. Потеря массы воды составила 67% от массы повторно добавленного раствора.

Таким образом, после проведения 2-х циклов "отверждение ЖРО - сушка" объем полученного продукта приблизительно составил 42 см3, что примерно в 2 раза меньше по сравнению с объемом исходного раствора (45 мл+40 мл).

Пример 2

К 15 мл модельного радиоактивного раствора добавили 4 г твердого полимера "KNOX Material" (Производитель - США, Кnох Fertilizer Company, Inc., http://www.ci.knoxville.tn.us/solidwaste/hazwaste.asp). Соотношение массы полимера (Т) к массе раствора (Ж) составило приблизительно Т:Ж-1:3,9. Отвержденная композиция выдерживалась на воздухе при комнатной температуре в течение 42 дней. Потеря массы воды составила 87% от исходной.

После этого к отвержденному и высушенному продукту добавляют новую порцию модельного раствора (12 мл) того же состава и повторяют сушку отвержденной композиции в течение 40 дней. Потеря массы воды составила 59% от массы повторно добавленного раствора.

В данном эксперименте после проведения 2-х циклов "отверждение ЖРО - сушка" объем полученного продукта приблизительно составил 11,5 см3, что примерно в 2,2 раза меньше по сравнению с объемом исходного раствора (15 мл+12 мл).

Пример 3

В данном примере приведены результаты серии экспериментов, проведенных с реальными радиоактивными растворами. В качестве полимерного материала, способного отверждать ЖРО, были использованы полимеры Petrobond, которые производит фирма Nochar (Nochar® Corp., USA).

Опыты проводили в полиэтиленовых стаканах с объемом 100 мл. В стакан помещалась навеска полимера в количестве 10 г, после чего заливали 50 мл раствора радиоактивных отходов следующего состава: AΣβ-1,1-10-6 Ки/л, AΣα-2,7-10-7 Ки/л, концентрация урана 7 мг/л, НNО3 - 0,07 моль/л.

Принимая во внимание присутствие в реальных растворах органических примесей, в работе использовались: полимер Nochar №960 и смеси полимеров Nochar №960 и Nochar №910.

После проведения смешивания раствора и полимера полученные отвержденные композиции выдерживались на воздухе при комнатной температуре.

По мере удаления влаги в полиэтиленовые стаканы с отвержденными образцами добавлялись свежие порции раствора САО с целью вовлечения в полимерную матрицу максимального количества раствора.

Условия проведения данной серии экспериментов по отверждению отходов и достигнутый фактор концентрирования (по отношению к исходному объему раствора) представлены в таблице.

Таблица № цикла (операция отверждения и сушка на воздухе) Объем раствора и соотношение Т:Ж при отверждении. Потеря массы раствора из образца после отверждения и сушки на воздухе. Достигнутый фактор концентрирования по отношению к исходному объему раствора Через 10 дней,% Через 24 дня, % Через 56 дней,% Серия опытов №1. Полимер Nochar №960 1-й цикл Объем раствора - 50 мл, масса полимера 10 г (Т:Ж=1:5) 43,7 84,7 93,2 ≈ 5,0 2-й цикл 35,0 47,8 64,0 ≈ 10,0 Серия опытов №2. Смесь полимеров Nochar №960 (95%) и Nochar №910 (5%) 1-й цикл Объем раствора - 50 мл, масса полимера 10 г 43,6 82,4 93,0 ≈ 5,0 2-й цикл 33,4 42,2 61,9 ≈ 10,0 Серия опытов №3. Смесь полимеров Nochar №960 (90%) и Nochar №910 (10%) 1-й цикл Объем раствора - 50 мл, масса полимера 10 г. 40,8 81,4 92,8 ≈ 5,0 2-й цикл 34,1 47,9 65,0 ≈ 10,0

Как уже было отмечено выше, количество проводимых операций "отверждение ЖРО - сушка" ограничивается только удельной активностью и солесодержанием ЖРО конкретной партии отходов.

Но уже после проведения только первых 2-х циклов удается достигнуть фактор концентрирования, равный 10.

Похожие патенты RU2518501C2

название год авторы номер документа
СПОСОБ ИММОБИЛИЗАЦИИ ЖИДКИХ РАДИОАКТИВНЫХ ОТХОДОВ 2020
  • Похитонов Юрий Алексеевич
  • Грозеску Анна Юрьевна
RU2763146C1
СПОСОБ ПЕРЕРАБОТКИ ЖИДКИХ ОРГАНИЧЕСКИХ РАДИОАКТИВНЫХ ОТХОДОВ 2013
  • Похитонов Юрий Алексеевич
  • Колобов Евгений Анатольевич
  • Денис Келли
RU2544008C1
СПОСОБ ЛИКВИДАЦИИ АВАРИИ ПРИ РАЗЛИВЕ РАДИОАКТИВНЫХ РАСТВОРОВ 2015
  • Похитонов Юрий Алексеевич
  • Чугунов Александр Сергеевич
  • Белозуб Андрей Николаевич
  • Денис Келли
RU2632924C2
СПОСОБ ПЕРЕРАБОТКИ ЖИДКИХ ОРГАНИЧЕСКИХ РАДИОАКТИВНЫХ ОТХОДОВ 2018
  • Меркулов Игорь Александрович
  • Алексеенко Владимир Николаевич
  • Баскаков Виктор Иванович
  • Дьяченко Антон Сергеевич
  • Ефремчикова Ольга Алексеевна
  • Скурыдина Евгения Сергеевна
RU2690682C1
СПОСОБ ПЕРЕРАБОТКИ ЖИДКИХ РАДИОАКТИВНЫХ ОТХОДОВ АТОМНЫХ ЭЛЕКТРИЧЕСКИХ СТАНЦИЙ (ВАРИАНТЫ) 2007
  • Андрианов Анатолий Карпович
  • Гусев Борис Александрович
  • Ефимов Анатолий Алексеевич
  • Кривобоков Виктор Васильевич
  • Ильин Владимир Георгиевич
RU2342721C1
СПОСОБ КОНДИЦИОНИРОВАНИЯ ОРГАНИЧЕСКИХ ЖИДКИХ РАДИОАКТИВНЫХ ОТХОДОВ 2018
  • Казаковский Николай Тимофеевич
  • Королев Владимир Александрович
RU2696013C1
СПОСОБ ПЕРЕРАБОТКИ ЖИДКИХ РАДИОАКТИВНЫХ ОТХОДОВ АТОМНЫХ ЭЛЕКТРИЧЕСКИХ СТАНЦИЙ 2007
  • Андрианов Анатолий Карпович
  • Гусев Борис Александрович
  • Кривобоков Виктор Васильевич
RU2336584C1
СПОСОБ ПЕРЕРАБОТКИ ТВЕРДЫХ СМЕШАННЫХ РАДИОАКТИВНЫХ ОТХОДОВ 2011
  • Андрианов Анатолий Карпович
  • Кривобоков Виктор Васильевич
RU2452050C1
СПОСОБ ИММОБИЛИЗАЦИИ ОРГАНИЧЕСКИХ ЖИДКИХ РАДИОАКТИВНЫХ ОТХОДОВ 2020
  • Казаковский Николай Тимофеевич
  • Королев Владимир Александрович
  • Возлеева Алла Юрьевна
RU2813695C1
СПОСОБ ПЕРЕРАБОТКИ ЖИДКИХ РАДИОАКТИВНЫХ ОТХОДОВ 1998
  • Богданович Н.Г.
  • Коновалов Э.Е.
  • Старков О.В.
  • Кочеткова Е.А.
  • Грушичева Е.А.
  • Шумская В.Д.
  • Емельянов В.П.
  • Мышковский М.П.
  • Любченко Н.Ф.
RU2154317C2

Реферат патента 2014 года СПОСОБ ИММОБИЛИЗАЦИИ ЖИДКИХ РАДИОАКТИВНЫХ ОТХОДОВ

Изобретение относится к области охраны окружающей среды, а именно к области переработки жидких радиоактивных или химических отходов и их изоляции от окружающей среды, и может быть использовано на стадии вывода АЭС из эксплуатации. В заявленном способе отверждение ЖРО осуществляется путем их смешения с полимерным материалом и последующего высушивания. При этом предусмотрено многократное добавление радиоактивных растворов к отвержденному материалу. Техническим результатом является иммобилизация самых разнообразных по составу растворов без какой либо подготовки и при этом происходит значительное сокращение объема отходов, направляемых на хранение, а также сокращение числа технологических стадий по сравнению с традиционными технологиями и возможность срочной локализации отходов в случае возникновения аварийных ситуаций на объектах атомной и химической промышленности.1 з.п. ф-лы.

Формула изобретения RU 2 518 501 C2

1. Способ иммобилизации жидких радиоактивных отходов, включающий смешение отходов с полимерным материалом и сушку полученной смеси, отличающийся тем, что процесс иммобилизации осуществляют путем многократного добавления новых порций радиоактивного раствора к отвержденному и высушенному продукту - полимеру, насыщенному радиоактивным раствором.

2. Способ по п.1, отличающийся тем, что сушку отвержденных отходов осуществляют в течение 5-30 и более суток.

Документы, цитированные в отчете о поиске Патент 2014 года RU2518501C2

СПОСОБ ДЕЗАКТИВАЦИИ ЖИДКИХ РАДИОАКТИВНЫХ ОТХОДОВ 1994
  • Бурангулов Н.И.
  • Плугин А.И.
RU2098872C1
СПОСОБ ПЕРЕРАБОТКИ РАДИОАКТИВНЫХ ЩЕЛОЧНЫХ МЕТАЛЛОВ 1996
  • Баранова Н.М.
  • Добров И.В.
  • Ефимова Л.А.
  • Кирюшин Ю.А.
  • Плотников В.Г.
RU2123212C1
Вибрационная машина для обработки длинномерных и крупногабаритных изделий 1973
  • Повидайло Владимир Александрович
  • Щигель Виктор Абрамович
  • Денисов Павел Дмитриевич
  • Картышев Борис Никифорович
SU500040A1
WO 2010047467 A1, 29.04.2010

RU 2 518 501 C2

Авторы

Похитонов Юрий Алексеевич

Келли Денис

Даты

2014-06-10Публикация

2012-02-27Подача