СПОСОБ ИЗГОТОВЛЕНИЯ ПОЛУПРОВОДНИКОВОГО ПРИБОРА Российский патент 2014 года по МПК H01L21/336 

Описание патента на изобретение RU2522182C1

Изобретение относится к области технологии производства полупроводниковых приборов, в частности к технологии изготовления полевого транзистора с пониженным сопротивлением затвора.

Известен способ изготовления полупроводникового прибора [пат. 5393683 США, МКИ H01L 21/268] формированием двухслойного затворного оксида на кремниевой подложке: сначала окислением подложки в кислородосодержащей атмосфере, а затем окислением в атмосфере N2O.

Недостатком полупроводникового прибора, изготовленного этим способом, является наличие в электродах затвора примесных ионов или ионов металлов, которые диффундируют в затворный окисел, ухудшая его характеристики, снижая диэлектрическую прочность.

Наиболее близким является способ изготовления полупроводникового прибора [пат. 5302846 США, МКИ H01L 29/46] с пониженным сопротивлением затвора за счет формирования структуры полевого транзистора в диффузионном кармане, ограниченном участками полевого окисла. Электрод затвора с боковой пристеночной изоляцией заглублен внутрь кармана, области сток/истока располагаются вблизи поверхности кармана, при этом канал вытянут вдоль одной из боковых поверхностей электрода затвора.

Недостатками способа являются:

- повышенные значения сопротивления затвора,

- большие токи утечки;

- низкая технологическая воспроизводимость,

- нестабильность пороговых напряжений.

Задача, решаемая изобретением: снижение сопротивления электрода затвора, обеспечивающее технологичность, улучшение параметров приборов, повышение качества и увеличение процента выхода годных.

Задача решается формированием затворного электрода путем последовательного нанесения многослойной структуры, состоящего из слоя поликремния, слоя нитрида кремния, сквозь который могут туннелировать электроны, слоя молибдена и второго слоя нитрида кремния.

Сущность способа состоит в следующем: поверх слоя тонкого затворного окисла толщиной 20-25 нм, сформированного на поверхности кремниевой пластины, осаждается поликремниевая пленка толщиной 180-200 нм. В эту пленку имплантируются положительные примесные ионы мышьяка (Ags+), после чего она при температуре 600°С покрывается в реакторе пленкой нитрида кремния толщиной 1-2 нм, образующего туннельный слой. Следом за этой операцией проводится осаждение молибденовой пленки толщиной 190-200 нм, выполняемое методом магнетронного распыления, а также осаждение пленки нитрида кремния толщиной 80-100 нм. Верхний слой нитрида кремния служит в качестве маски при ионной имплантации областей истока и стока транзисторов. Затем полученные пленки отжигают при температуре 920-1000°С. Туннельный слой нитрида кремния эффективно защищает лежащий под ним поликремниевый затвор как от образования силицида, так и от диффузии примесей из слоя молибдена в поликремний.

По предлагаемому способу были изготовлены и исследованы структуры. Результаты обработки представлены в таблице 1.

Таблица 1 Параметры п/п структур, изготовленных по стандартной технологии Параметры п/п структур, изготовленных по предлагаемой технологии сопротивления электрода затвора. Ом/ Ток утечки, Iут·1010 A сопротивления электрода затвора Ом/ Ток утечки, Iут·1010 A 1 7,0 37 0,08 0,7 2 6,5 35 0,06 0,5 3 9,8 33 0,1 0,3 4 6,8 39 0,07 0,9 5 2,1 32 0,02 0,2 6 4,7 41 0,05 0,8 7 8,5 36 0,09 0,6 8 3,6 44 0,04 0,9 9 6,2 38 0,07 0,8 10 2,8 45 0,03 0,5 11 9,6 42 0,1 0,2 12 7,9 34 0,08 0,4 13 5,2 31 0,06 0,1 14 4,5 47 0,05 0,7

Экспериментальные исследования показали, что выход годных полупроводниковых структур на партии пластин, сформированных в оптимальном режиме, увеличился на 16,7%.

Технический результат: снижение сопротивления электрода затвора, обеспечение технологичности, улучшение параметров, повышение надежности и увеличение процента выхода годных приборов.

Стабильность параметров во всем эксплуатационном интервале температур была нормальной и соответствовала требованиям.

Предложенный способ изготовления полупроводникового прибора позволяет повысить процент выхода годных приборов, улучшить их качество и надежность.

Похожие патенты RU2522182C1

название год авторы номер документа
Способ изготовления мелкозалегающих переходов 2020
  • Мустафаев Гасан Абакарович
  • Мустафаев Абдулла Гасанович
  • Мустафаев Арслан Гасанович
  • Черкесова Наталья Васильевна
RU2748335C1
Способ изготовления полупроводникового прибора 2015
  • Мустафаев Гасан Абакарович
  • Мустафаев Абдулла Гасанович
  • Мустафаев Арслан Гасанович
RU2606780C1
Способ изготовления полупроводникового прибора 2019
  • Хасанов Асламбек Идрисович
  • Мустафаев Арслан Гасанович
  • Мустафаев Гасан Абакарович
  • Кутуев Руслан Азаевич
  • Хазбулатов Зелимхан Лечиевич
RU2719622C1
Способ изготовления полупроводникового прибора 2020
  • Мустафаев Гасан Абакарович
  • Мустафаев Абдулла Гасанович
  • Мустафаев Арслан Гасанович
  • Черкесова Наталья Васильевна
RU2734094C1
Способ формирования полевых транзисторов 2022
  • Мустафаев Гасан Абакарович
  • Черкесова Наталья Васильевна
  • Мустафаев Арслан Гасанович
  • Мустафаев Абдулла Гасанович
RU2791268C1
СПОСОБ ИЗГОТОВЛЕНИЯ ПОЛУПРОВОДНИКОВОГО ПРИБОРА 2011
  • Мустафаев Гасан Абакарович
  • Мустафаев Абдулла Гасанович
  • Мустафаев Арслан Гасанович
RU2466476C1
СПОСОБ ИЗГОТОВЛЕНИЯ ПОЛУПРОВОДНИКОВОГО ПРИБОРА 2018
  • Мустафаев Гасан Абакарович
  • Мустафаев Абдулла Гасанович
  • Мустафаев Арслан Гасанович
  • Черкесова Наталья Васильевна
RU2688851C1
Способ изготовления полупроводникового прибора 2022
  • Мустафаев Арслан Гасанович
  • Хасанов Асламбек Идрисович
  • Мустафаев Гасан Абакарович
  • Мустафаев Абдулла Гасанович
  • Черкесова Наталья Васильевна
RU2785083C1
Способ изготовления полупроводникового прибора 2018
  • Хасанов Асламбек Идрисович
  • Мустафаев Арслан Гасанович
  • Мустафаев Гасан Абакарович
  • Кутуев Руслан Азаевич
RU2677500C1
Способ изготовления полупроводникового прибора 2023
  • Мустафаев Гасан Абакарович
  • Хасанов Асламбек Идрисович
  • Мустафаев Арслан Гасанович
  • Мустафаев Абдулла Гасанович
  • Черкесова Наталья Васильевна
RU2818689C1

Реферат патента 2014 года СПОСОБ ИЗГОТОВЛЕНИЯ ПОЛУПРОВОДНИКОВОГО ПРИБОРА

Изобретение относится к области технологии производства полупроводниковых приборов, в частности к технологии изготовления полевого транзистора с пониженным сопротивлением затвора. В способе изготовления полупроводникового прибора электрод затвора формируют путем последовательного нанесения поверх слоя затворного окисла многослойной структуры, состоящей из слоя поликремния, слоя нитрида кремния, сквозь который могут туннелировать электроны, слоя молибдена и второго слоя нитрида кремния. Технический результат: снижение сопротивления электрода затвора, обеспечение технологичности, улучшение параметров, повышение надежности и увеличение процента выхода годных приборов. 1 табл.

Формула изобретения RU 2 522 182 C1

Способ изготовления полупроводникового прибора, включающий формирование затворного окисла, электрода затвора, отличающийся тем, что электрод затвора формируют путем последовательного нанесения поверх слоя затворного окисла поликремниевой пленки толщиной 180-200 нм с последующим нанесением на него при температуре 600°С пленки нитрида кремния толщиной 1-2 нм, затем осаждают пленку молибдена толщиной 190-200 нм и второй слой пленки нитрида кремния толщиной 80-100 нм и проводят отжиг при температуре 920-1000°С.

Документы, цитированные в отчете о поиске Патент 2014 года RU2522182C1

Элемент памяти 1988
  • Ерков В.Г.
  • Девятова С.Ф.
  • Лихачев А.А.
  • Талдонов А.Н.
  • Голод И.А.
SU1540563A1
СПОСОБ ИЗГОТОВЛЕНИЯ МОЩНЫХ ПОЛУПРОВОДНИКОВЫХ ПРИБОРОВ 1992
  • Клопов Игорь Николаевич
RU2022399C1
US 8013402 B2, 06.09.2011
Пресс для выдавливания из деревянных дисков заготовок для ниточных катушек 1923
  • Григорьев П.Н.
SU2007A1
ВАЛОЧНО-ТРЕЛЕВОЧНАЯ МАШИНА 1995
  • Прохоров Л.Н.
  • Нечипоренко Ф.А.
  • Зинин В.Ф.
RU2105466C1
JP 2007165813 A, 28.06.2007

RU 2 522 182 C1

Авторы

Мустафаев Гасан Абакарович

Мустафаев Абдулла Гасанович

Мустафаев Арслан Гасанович

Даты

2014-07-10Публикация

2012-12-17Подача