Способ изготовления полупроводникового прибора Российский патент 2017 года по МПК H01L21/316 

Описание патента на изобретение RU2606780C1

Изобретение относится к области технологии производства полупроводниковых приборов, в частности к технологии изготовления затворного оксида полевого транзистора.

Известен способ изготовления полупроводникового прибора [Патент США №5393683, МКИ H01L 21/265], который предусматривает формирование двухслойного затворного оксида на кремниевой подложке, сначала окислением подложки в кислородосодержащей атмосфере, а затем окислением в атмосфере N2O. Соотношение слоев по толщине (в %) 80:20 от суммарной толщины слоя.

В таких полупроводниковых приборах из-за образования дефектов ухудшаются электрофизические параметры полупроводниковых приборов.

Известен способ изготовления полевого транзистора [Патент США №5093700, МКИ H01L 27/01], который предусматривает формирование многослойного поликремниевого затвора, в котором слои поликремния разделяются слоями кремния толщиной 0,1-0,5 им, используются три слоя поликремния и два слоя оксида кремния. Поликремний осаждают с использованием SiH4 при давлении 53 Па и температуре 650°С, а слой оксида формируется при 1% O2 и 99% Аr при температуре 800°С.

Недостатками этого способа являются:

- повышенная плотность дефектов;

- образование механических напряжений;

- низкая технологичность.

Задача, решаемая изобретением: снижение плотности дефектов, обеспечивающее технологичность, улучшение параметров приборов, повышение качества и увеличение процента выхода годных.

Задача решается путем формирования затворного оксида полевого транзистора из изопропоксида алюминия при температуре 400°С, давлении 100 Па и расходе газовой смеси 250 мл/мин, со скоростью роста слоя Al2O3 20 нм/мин.

Технология способа состоит в следующем: исходным материалом служили подложки р-типа, с ориентацией (100). Подготовка пластин включала химически-механическую полировку в растворе Br2-HBF-H2O и обработку в растворе HF (40%) в течение 30 с. Изготовление полевого транзистора начинали с формирования контактов истока и стока - путем обратной литографии, с напылением сплава Ni-Ge-Au, с последующим вжиганием (5 мин при 350°С в атмосфере N2-H2) для образования n-областей. Далее выращивали слой А12О3, на нем с помощью обратной литографии и нанесения А1 формировали электрод затвора. Затем в слое А12O3 вытравливали окна к контактам истока и стока. Для формирования А12O3 газ-носитель (N2) пропускали через кварцевый барботер с источником, при давлении 100 Па и расходе газовой смеси 250 мл/мин. А12O3 осаждали при температуре 400°С и скорости роста слоя А12O3 ~20 нм/мин.

По предлагаемому способу были изготовлены и исследованы полупроводниковые приборы.

Результаты обработки представлены в таблице.

Экспериментальные исследования показали, что выход годных полупроводниковых структур на партии пластин, сформированных в оптимальном режиме, увеличился на 24,8%.

Технический результат: снижение плотности дефектов, обеспечение технологичности, улучшение параметров, повышение надежности и увеличение процента выхода годных приборов.

Стабильность параметров во всем эксплуатационном интервале температур была нормальной и соответствовала требованиям.

Предложенный способ изготовления полупроводникового прибора путем формирования затворного оксида из изопроксида алюминия при температуре 400°С, давлении 100 Па и расходе газовой смеси 250 мл/мин, со скоростью роста слоя А12O3 20 нм/мин позволяет повысить процент выхода годных приборов и улучшить их надежность.

Похожие патенты RU2606780C1

название год авторы номер документа
Способ изготовления полупроводникового прибора 2020
  • Хасанов Асламбек Идрисович
  • Мустафаев Арслан Гасанович
  • Мустафаев Гасан Абакарович
RU2748455C1
Способ изготовления полупроводникового прибора 2020
  • Мустафаев Гасан Абакарович
  • Мустафаев Абдулла Гасанович
  • Мустафаев Арслан Гасанович
  • Черкесова Наталья Васильевна
RU2752125C1
Способ изготовления полупроводникового прибора 2023
  • Мустафаев Гасан Абакарович
  • Черкесова Наталья Васильевна
  • Мустафаев Арслан Гасанович
  • Хасанов Асламбек Идрисович
  • Мустафаев Абдулла Гасанович
RU2805132C1
Способ изготовления полупроводникового прибора 2019
  • Хасанов Асламбек Идрисович
  • Мустафаев Арслан Гасанович
  • Мустафаев Гасан Абакарович
  • Кутуев Руслан Азаевич
  • Хазбулатов Зелимхан Лечиевич
RU2719622C1
Способ изготовления полупроводникового прибора 2023
  • Мустафаев Гасан Абакарович
  • Черкесова Наталья Васильевна
  • Мустафаев Арслан Гасанович
  • Хасанов Асламбек Идрисович
  • Мустафаев Абдулла Гасанович
RU2813176C1
Способ изготовления полупроводникового прибора 2019
  • Мустафаев Гасан Абакарович
  • Мустафаев Абдулла Гасанович
  • Мастафаев Арслан Гасанович
  • Черкесова Наталья Васильевна
RU2723982C1
Способ изготовления полупроводникового прибора 2017
  • Хасанов Асламбек Идрисович
  • Мустафаев Арслан Гасанович
  • Мустафаев Гасан Абакарович
RU2671294C1
Способ изготовления полупроводникового прибора 2020
  • Мустафаев Гасан Абакарович
  • Мустафаев Абдулла Гасанович
  • Мустафаев Арслан Гасанович
  • Черкесова Наталья Васильевна
RU2734094C1
Способ изготовления полупроводникового прибора 2023
  • Мустафаев Гасан Абакарович
  • Черкесова Наталья Васильевна
RU2822580C1
Способ изготовления полупроводникового прибора 2022
  • Мустафаев Арслан Гасанович
  • Хасанов Асламбек Идрисович
  • Мустафаев Гасан Абакарович
  • Мустафаев Абдулла Гасанович
  • Черкесова Наталья Васильевна
RU2785083C1

Реферат патента 2017 года Способ изготовления полупроводникового прибора

Изобретение относится к области технологии производства полупроводниковых приборов, в частности к технологии изготовления затворного оксида полевого транзистора. В способе изготовления полупроводникового прибора подзатворный оксид формируют из изопроксида алюминия при температуре 400°С, давлении 100 Па и расходе газовой смеси 250 мл/мин, со скоростью роста слоя А12O3 20 нм/мин. Изобретение позволяет повысить процент выхода годных приборов и улучшить их надежность. 1 табл.

Формула изобретения RU 2 606 780 C1

Способ изготовления полупроводникового прибора, включающий процессы формирования областей стока, истока, затвора и подзатворного диэлектрика, отличающийся тем, что подзатворный диэлектрик формируют из изопроксида алюминия при температуре 400°С, давлении 100 Па и расходе газовой смеси 250 мл/мин, со скоростью роста слоя Аl2O3 20 нм/мин.

Документы, цитированные в отчете о поиске Патент 2017 года RU2606780C1

СПОСОБ ИЗГОТОВЛЕНИЯ ПОЛУПРОВОДНИКОВОГО ПРИБОРА С УПРАВЛЯЮЩИМ ЭЛЕКТРОДОМ НАНОМЕТРОВОЙ ДЛИНЫ 2003
  • Валиев К.А.
  • Орликовский А.А.
  • Кривоспицкий А.Д.
  • Окшин А.А.
RU2237947C1
СПОСОБ ИЗГОТОВЛЕНИЯ ПОЛЕВОГО НАНОТРАНЗИСТОРА С КОНТАКТАМИ ШОТТКИ С УКОРОЧЕННЫМ УПРАВЛЯЮЩИМ ЭЛЕКТРОДОМ НАНОМЕТРОВОЙ ДЛИНЫ 2012
  • Вьюрков Владимир Владимирович
  • Кривоспицкий Анатолий Дмитриевич
  • Лукичев Владимир Федорович
  • Окшин Алексей Александрович
  • Орликовский Александр Александрович
  • Руденко Константин Васильевич
  • Семин Юрий Федорович
RU2504861C1
KR 20090084192 A, 05.08.2009
US 6794198 B1, 21.09.2004
US 5393683 A, 28.02.1995.

RU 2 606 780 C1

Авторы

Мустафаев Гасан Абакарович

Мустафаев Абдулла Гасанович

Мустафаев Арслан Гасанович

Даты

2017-01-10Публикация

2015-06-09Подача