СПОСОБ ДЕАСФАЛЬТИЗАЦИИ МАЗУТА Российский патент 2014 года по МПК C10G25/00 C10G25/08 

Описание патента на изобретение RU2522745C2

Изобретение относится к нефтеперерабатывающей промышленности, в частности к очистке мазута от асфальтенов, смол и тяжелых металлов для получения качественного сырья каталитического крекинга.

Известен способ переработки мазута путем разделения вакуумной ректификации на вакуумный газойль и гудрон с последующей раздельной переработкой полученных фракций (Справочник нефтепереработчика, под ред. Г.А.Ластовкина, Л., Химия, 1986, стр.195-198). Недостатками известного способа являются высокие энергетические затраты на разделение мазута на фракции и трудности в квалифицированной переработке гудрона.

Известен способ очистки мазута от асфальтенов, смол и тяжелых металлов путем деасфальтизации мазута пропаном или бутаном в сырье для дальнейшей переработки (Справочник нефтепереработчика, под ред. Г.А.Ластовкина, Л., Химия, 1986, стр.199-207). Недостатками указанного способа являются высокие энергетические затраты на процесс деасфальтизации и низкий выход сырья для дальнейшей переработки. При увеличении выхода деасфальтизата изменением условий проведения процесса резко ухудшается качество деасфальтизата.

Известен способ получения синтетической нефти, включающий контактирование мазута с нагретым пористым инертным по отношению к реакции крекинга материалом при температуре 350-500°С и последующее отделение образовавшихся паров от пропитанного тяжелыми нефтяными остатками частиц пористого адсорбента (Hydrocarbon Process, v.62, №9, p.139, 1984). В известном способе минеральный пористый адсорбент после контактирования с мазутом и заполнения его пор нефтяными остатками направляют в специальный регенератор для выжигания либо газификации нефтяных остатков и нагрева адсорбента, после чего адсорбент рециркулируют на контактирование с мазутом. Недостатками известного способа являются его низкая эффективность в использовании тяжелых остатков.

Наиболее близким является способ очистки мазута от асфальтенов, смол и тяжелых металлов путем контактирования пропитанного мазутом широкопористого адсорбента-донора с узкопористым адсорбентом-акцептором (патент РФ №2415174, прототип). Пропитанный мазутом широкопористый адсорбент-донор приводят в контакт с узкопористым адсорбентом-акцептором при температуре 460-560°С, при весовом соотношении адсорбент-донор к адсорбенту-акцептору 1,0:(1,4-4,0) и времени контакта 1-5 мин, причем в качестве адсорбента-донора используют адсорбент с объемом пор 0,5-1,0 см3/г, средним диаметром пор 200-1000 Å и размером частиц 0,5-1,0 мм, а в качестве адсорбента-акцептора используют катализатор крекинга с размером частиц 0,02-0,16 мм. Недостатком указанного способа является высокий выход кокса на мазут при высокой температуре контактирования пропитанного мазутом адсорбента-донора и катализатора крекинга.

Целью настоящего изобретения является разработка способа деасфальтизации мазута для получения качественного сырья каталитического крекинга с низким выходом кокса на перерабатываемый мазут и минимальным содержанием асфальтенов и тяжелых металлов (ванадий+никель).

Указанная цель достигается путем раздельного осуществления стадий адсорбционной деасфальтизации мазута и каталитического крекинга.

В предлагаемом способе деасфальтизации мазута контактирование пропитанного мазутом широкопористого адсорбента с катализатором крекинга осуществляют в барабанной вращающейся печи при температуре 200-250°C, времени контакта 5-15 мин, при весовом соотношении адсорбента к катализатору крекинга 1,0:(1,4-4,0), с последующим разделением частиц адсорбента и катализатора крекинга, а затем проводят каталитический крекинг деасфальтизата, содержащегося в порах катализатора крекинга, с получением на выходе бензина, легкого и тяжелого газойлей, газовых продуктов крекинга и кокса.

Существенными отличиями от прототипа является то, что контактирование пропитанных мазутом адсорбента и катализатора крекинга ведут при температурах 200-250°C в барабанной вращающейся печи, после чего осуществляют разделение частиц за счет разности в их размерах. Катализатор крекинга, в порах которого находится деасфальтизат, направляют на каталитический крекинг при температурах 490-540°C, а широкопористый адсорбент с адсорбированными асфальтенами и тяжелыми металлами подвергают парокислородной газификации.

В качестве широкопористого адсорбента (адсорбента-донора) используют композитный алюмосиликатный материал, состоящий из монтмориллонита и/или его натриевой формы и термодиспергированного оксида алюминия при весовом соотношении компонентов от 1:1 до 1:5 (патент на изобретение 2205685). Широкопористый адсорбент характеризуется объемом пор не менее 0,6 см3/г, средним диаметром пор в диапазоне от 200 до 1000 Å и размером частиц 0,5-1,0 мм.

В качестве катализатора крекинга (адсорбента-акцептора) используют промышленный микросферический катализатор для крекинга нефтяных фракций, содержащий ультрастабильный цеолит и матрицу, в качестве компонентов которой используют аморфный алюмосиликат, гидроксид алюминия и бентонитовую глину (патент на изобретение 2300420). Катализатор характеризуется объемом пор 0,3-0,5 см3/г, средним диаметром пор в диапазоне от 60 до 100 Å и размером частиц 0,02-0,16 мм.

Материальный баланс процесса деасфальтизации и качество деасфальтизата приведены в таблице:

содержание фракций мазута в широкопористом адсорбенте и катализаторе крекинга определяли весовым методом по изменению массы;

содержание асфальтенов, тяжелых металлов (ванадий и никель) и коксуемость определяли анализом экстракта деасфальтизата (экстракцию проводили растворителем, состоящим из смеси этилового спирта и бензола в соотношении 1:1 по объему).

Пример 1. Выбран пример 1 из прототипа как наиболее близкий по температурному режиму.

Использовался мазут Ноябрьского месторождения нефти со следующими характеристиками:

- плотность мазута 0,948 г/см3;

- содержание серы 1,38 мас.%;

- содержание общего азота 0,26 мас.%;

- содержание ванадия 3,6 ppm;

- содержание асфальтенов 6,1 мас.%;

- коксуемость по Конрадсону 9,0 мас.%;

- начало кипения мазута 283°C;

- 50% точка отгона 547°C.

5 г широкопористого адсорбента, имеющего средний диаметр пор 200 Å и общий объем пор 0,6 см3/г, пропитывают 2,8 г мазута Ноябрьской нефти, подогретого до 280°C. Пропитанный адсорбент приводят в контакт с 7,2 г катализатора крекинга в условиях интенсивного перемешивания в псевдоожиженном слое при температуре 460°C. Диаметр пор катализатора крекинга составляет 80 Å и общий объем пор 0,4 см3/г. Весовое соотношение широкопористого адсорбента к катализатору крекинга составляет 1,0:1,4. Среднее время контактирования составляет 3 мин. Материальный баланс процесса деасфальтизации и качество деасфальтизата приведены в таблице.

Пример 2. 5 г широкопористого адсорбента пропитывают 2,8 г мазута Ноябрьской нефти, подогретого до 90°C для уменьшения вязкости мазута. Пропитанный адсорбент приводят в контакт с 20 г катализатора крекинга во вращающейся барабанной печи с косвенным нагревом при температуре 250°C. Время контактирования составляет 15 мин, весовое соотношение широкопористый адсорбент:катализатор крекинга составляет 1,0:4,0. Затем их частицы разделяют методом рассева на ситах за счет их различного фракционного состава.

Катализатор крекинга, в порах которого находится деасфальтизат, направляют на каталитический крекинг, а широкопористый адсорбент с адсорбированными асфальтенами и тяжелыми металлами подвергают парокислородной газификации.

Пример 3. Аналогичен примеру 2, отличие заключается в том, что контактирование осуществляют при температуре 200°C, время контакта 10 минут.

Пример 4. Аналогичен примеру 2, отличие заключается в том, что контактирование осуществляют при температуре 300°C и весовом соотношении широкопористый адсорбент:катализатор крекинга 1,0:3,0. Данные, приведенные в таблице, показывают, что повышенная температура процесса адсорбционной деасфальтизации мазута приводит к ухудшения качества деасфальтизата.

Пример 5. Аналогичен примеру 2, отличие заключается в том, что контактирование осуществляют при температуре 150°C и весовом соотношении широкопористый адсорбент:катализатор крекинга 1,0:2,0. Данные, приведенные в таблице, показывают, что низкая температура процесса адсорбционной деасфальтизации мазута приводит к уменьшению выхода деасфальтизата.

Как следует из приведенных примеров и таблицы, предлагаемый способ обеспечивает получение качественного сырья для каталитического крекинга с коксуемостью не более 1,0 мас.% и содержанием тяжелых металлов (ванадий+никель) не более 1,5 массовых миллионных долей.

Материальный баланс процесса деасфальтизации и качество деасфальтизата Наименование показателей Пример 1 Пример 2 Пример 3 Пример 4 Пример 5 Остаток мазута на доноре, мас.% 31,2 19,4 21,2 16,9 28,5 Выход деасфальтизата, мас.% 68,8 80,6 78,8 83,1 71,5 Коксуемость деасфальтизата, мас.% 2,2 0,8 0,7 1,9 0,6 Содержание ванадия и никеля в деасфальтизате, ррм 1,5 0,3 0,2 1,6 0,2 Содержание асфальтенов в деасфальтизате, мас.% 1,3 0,73 0,8 1,5 0,3

Похожие патенты RU2522745C2

название год авторы номер документа
СПОСОБ АДСОРБЦИОННО-КОНТАКТНОЙ ОЧИСТКИ МАЗУТА 2009
  • Доронин Владимир Павлович
  • Сорокина Татьяна Павловна
  • Лихолобов Владимир Александрович
RU2415174C1
Способ деасфальтизации и деметаллизации тяжелого нефтяного сырья 2015
  • Лысиков Антон Игоревич
  • Окунев Алексей Григорьевич
  • Пархомчук Екатерина Васильевна
  • Парунин Павел Дмитриевич
  • Полухин Александр Валерьевич
  • Семейкина Виктория Сергеевна
  • Сашкина Ксения Александровна
  • Деревщиков Владимир Сергеевич
RU2610525C1
СПОСОБ ПОЛУЧЕНИЯ СЫРЬЯ ДЛЯ КАТАЛИТИЧЕСКОГО КРЕКИНГА 1994
  • Хайрудинов И.Р.
  • Везиров Р.Р.
  • Султанов Ф.М.
  • Явгильдин И.Р.
  • Мингараев С.С.
  • Хамитов Г.Г.
  • Райкова Р.С.
  • Теляшев Э.Г.
  • Имашев У.Б.
RU2079540C1
СПОСОБ УГЛУБЛЁННОЙ ПЕРЕРАБОТКИ НЕФТИ 2021
  • Шуверов Владимир Михайлович
  • Зайнутдинов Рустам Амирович
  • Зиганшин Карим Галимзянович
RU2802477C2
СПОСОБ ПЕРЕРАБОТКИ НЕФТЯНЫХ ОСТАТКОВ 2016
  • Хавкин Всеволод Артурович
  • Гуляева Людмила Алексеевна
  • Виноградова Наталья Яковлевна
  • Шмелькова Ольга Ивановна
  • Капустин Владимир Михайлович
  • Царев Антон Вячеславович
  • Чернышева Елена Александровна
  • Зуйков Александр Владимирович
  • Махин Дмитрий Юрьевич
RU2613634C1
СПОСОБ ДЕМЕТАЛЛИЗАЦИИ ТЯЖЕЛОГО НЕФТЯНОГО СЫРЬЯ 2015
  • Магомедов Рустам Нухкадиевич
  • Попова Алина Загитовна
  • Марютина Татьяна Анатольевна
RU2611416C1
СПОСОБ АДСОРБЦИОННО-КАТАЛИТИЧЕСКОЙ ОЧИСТКИ НЕФТЯНОГО ОСТАТОЧНОГО СЫРЬЯ 1987
  • Сериков П.Ю.
  • Коган Ю.С.
  • Еркин В.Н.
  • Мархевка В.И.
  • Мелик-Ахназаров Т.Х.
  • Житомирский Б.М.
  • Козлов М.Е.
  • Немчинов В.Н.
  • Егоров Ю.А.
SU1505006A1
СПОСОБ ОЧИСТКИ ВАКУУМНЫХ ГАЗОЙЛЕЙ И МАЗУТОВ 2004
  • Залищевский Григорий Давыдович
  • Гайле Александр Александрович
  • Костенко Алексей Васильевич
  • Лисицин Николай Васильевич
  • Семенов Леонид Васильевич
  • Яковлев Александр Алексеевич
  • Кайфаджян Елена Александровна
  • Колдобская Любовь Леонидовна
RU2275413C1
СПОСОБ ГИДРОГЕНИЗАЦИОННОГО ОБЛАГОРАЖИВАНИЯ ОСТАТОЧНОГО НЕФТЯНОГО СЫРЬЯ 2019
  • Виноградова Наталья Яковлевна
  • Гуляева Людмила Алексеевна
  • Шмелькова Ольга Ивановна
  • Битиев Георгий Владимирович
  • Красильникова Людмила Александровна
  • Минаев Артем Константинович
  • Минаев Павел Петрович
  • Хамзин Юнир Азаматович
  • Никульшин Павел Анатольевич
RU2737803C1
Способ переработки остаточного нефтяного сырья 1990
  • Вотлохин Роберт Юрьевич
  • Тараканов Геннадий Васильевич
  • Мановян Андраник Киракосович
SU1796662A1

Реферат патента 2014 года СПОСОБ ДЕАСФАЛЬТИЗАЦИИ МАЗУТА

Изобретение относится к нефтеперерабатывающей промышленности. Изобретение касается способа деасфальтизации мазута путем контактирования пропитанного мазутом широкопористого адсорбента с катализатором крекинга. Способ осуществляют в барабанной вращающейся печи при температуре 200-250°С, времени контакта 5-15 мин, при весовом соотношении адсорбента к катализатору крекинга 1,0:(1,4-4,0), с последующим разделением частиц адсорбента и катализатора крекинга, а затем проводят каталитический крекинг деасфальтизата, содержащегося в порах катализатора крекинга. Технический результат - получение качественного сырья каталитического крекинга с низким выходом кокса, минимальным содержанием асфальтенов и тяжелых металлов. 1 табл., 5 пр.

Формула изобретения RU 2 522 745 C2

Способ деасфальтизации мазута путем контактирования пропитанного мазутом широкопористого адсорбента с катализатором крекинга при весовом соотношении адсорбента к катализатору крекинга 1,0:(1,4-4,0), отличающийся тем, что контактирование пропитанного мазутом широкопористого адсорбента с катализатором крекинга осуществляют в барабанной вращающейся печи при температуре 200-250°C и времени контакта 5-15 мин, с последующим разделением частиц адсорбента и катализатора крекинга, а затем проводят каталитический крекинг деасфальтизата, содержащегося в порах катализатора крекинга.

Документы, цитированные в отчете о поиске Патент 2014 года RU2522745C2

СПОСОБ АДСОРБЦИОННО-КОНТАКТНОЙ ОЧИСТКИ МАЗУТА 2009
  • Доронин Владимир Павлович
  • Сорокина Татьяна Павловна
  • Лихолобов Владимир Александрович
RU2415174C1
RU 94019466 А1, 10.01.1996
СПОСОБ ТЕРМИЧЕСКОЙ БЕЗОТХОДНОЙ ПЕРЕРАБОТКИ ТЯЖЕЛЫХ НЕФТЯНЫХ ОСТАТКОВ В СМЕСЯХ С ТВЕРДЫМ ТОПЛИВОМ 2008
  • Сыроежко Александр Михайлович
  • Абдельхафид Фугалья
  • Потехин Вячеслав Матвеевич
  • Ларина Наталия Владиславовна
  • Васильев Валентин Всеволодович
  • Юмашев Эдуард Юрьевич
RU2378317C2
WO 2010147853 A1, 23.12.2010

RU 2 522 745 C2

Авторы

Доронин Владимир Павлович

Сорокина Татьяна Павловна

Потапенко Олег Валерьевич

Липин Петр Владимирович

Даты

2014-07-20Публикация

2012-07-25Подача