СПОСОБ ПЕРЕРАБОТКИ ТИТАНОВЫХ ШЛАКОВ Российский патент 2014 года по МПК C22B7/04 C22C35/00 

Описание патента на изобретение RU2522876C1

Изобретение относится к области металлургии и может быть использовано при переработке титансодержащих шлаковых отходов для получения титаноалюминиевых сплавов или лигатур.

Известен способ переработки шлаков производства ферротитана, включающий добавление к жидкому или твердому шлаку извести, кварцита порошка алюминия, железной руды, ферросилиция и восстановление оксидов металлов путем плавки в электросталеплавильной печи с получением силикотитана, содержащего 17-20% Ti, 18-24% Si, 25-30% Al, <0.35% С, 0.02% S, 0.05% P, или ферросиликотитана, содержащего 20-35% Ti, 15-25% Si, 2-8% Al, и высокоглиноземистого полупродукта (Гасик М.И., Лякишев И.Л., Емлин Б.И. Теория и технология производства ферросплавов. М.: Металлургия, 1988, с.466-467).

Недостатками данного способа являются многостадийность, сложное аппаратурное оформление процесса и невысокая комплексность использования исходного сырья.

Известен способ переработки жидкого титанистого шлака, получаемого при переработке титаномагнетитовой руды, включающий помещение его в плавильный агрегат, в котором с помощью электромагнитного поля создается вращение жидкого сплава, восстановление оксидов металлов на поверхности вращающегося жидкого сплава при температуре 1750°С с использованием в качестве металлического восстановителя алюминия или ферросилиция с получением титаносодержащего сплава и шлакового алюминиево-кремниевого расплава (Патент РФ №2206630, МПК С22В 33/00, С22В 37/00, опубл. 20.06.2003).

Недостатками известного способа являются высокая себестоимость и высокая энергоемкость процесса.

Наиболее близким по совокупности существенных признаков является способ производства высокотитаносодержащей лигатуры, в котором полученный после расплавления и восстановления ильменитового концентрата шлак, содержащий оксиды титана, восстанавливают в плавильном агрегате алюминием при температуре 1600-1800°С с введением оксида кальция до его содержания 20-30% с получением высокотитаносодержащей лигатуры и шлака, содержащего оксиды алюминия и кальция, и отделяют лигатуру от шлака (Патент РФ №2250271, МПК С22С 35/00, 38/14, опубл. 20.04.2005).

Недостатками известного способа являются:

- недостаточно высокое качество получаемого сплава, обусловленное повышенным содержанием в сплаве кислорода (более 4%), азота (более 1%) и, соответственно, неметаллических включений вследствие большого сродства титана к кислороду;

- невысокое извлечение титана из оксидов в титаноалюминиевый сплав;

- проблемы разделения металлической и шлаковой фаз.

Техническим результатом заявляемого изобретения является повышение качества сплава и извлечения титана в сплав, улучшение процесса разделения сплава и шлака.

Указанный результат достигается тем, что используют способ переработки титановых шлаков, включающий восстановительную плавку титансодержащего шлака с алюминием и кальцийсодержащим материалом и отделение сплава от шлака, отличающийся тем, что в качестве кальцийсодержащего материала используют фторид кальция и кальций, или фторид кальция и оксид кальция, или фторид кальция и смесь кальция и оксида кальция при поддержании в шихте соотношения диоксид титана: алюминий:кальций и/или оксид кальция:фторид кальция по массе 1:(0,58-1,62):0,28-1,1):(0,09-0,32), а восстановительную плавку ведут при температуре 1450-1750°С. При этом в качестве оксидного титансодержащего шлака используют титансодержащий шлак от производства ферротитана, плавки титаномагнетитовой руды в электро- или доменной печи.

Использование в качестве кальцийсодержащего материала фторида кальция с оксидом кальция, кальцием или их смесью позволяет селективно перевести в титаноалюминиевый сплав титан и ограничить переход в него кислорода и азота. При этом поддержание заявляемого соотношения между диоксидом титана, алюминием, кальцием и/или оксидом кальция и фторидом кальция обеспечивает, с одной стороны, максимальную степень извлечения титана в титаноалюминиевый сплав при восстановлении диоксида титана из исходного шлака и образование легкоплавкой подвижной шлаковой системы и, с другой стороны, форсирование режима процесса восстановительной плавки, уменьшение общей массы образующегося шлака и экономию шихтовых материалов и энергоресурсов. Проведение восстановительной плавки при 1450-1750°С позволяет получить в сплавах интерметаллиды TixAly, характеризующиеся сильными внутренними химическими связями, что обеспечивает высокое содержание титана в сплаве. Получаемый вторичный оксидный полупродукт - алюмокальциевый шлак - может быть использован для последующего производства высококачественного цемента.

Поддержание соотношения титана, алюминия, фторида кальция, кальция и/или оксида кальция в шихте ниже заявляемых пределов не позволяет достичь высокого извлечения титана в титаноалюминиевый сплав. Поддержание количеств титана, алюминия, фторида кальция, кальция и/или оксида кальция в шихте выше заявляемых пределов не способствует увеличению степени извлечения в титаноалюминиевый сплав титана и приводит к уменьшению содержания в сплаве титана до 30% и излишнему переходу в этот сплав кислорода и азота.

Предлагаемый способ осуществляют следующим образом: готовят шихту смешением титансодержащего шлака (титансодержащий шлак от получения ферротитана, плавки титаномагнетитовой руды в электро- или доменной печи) с алюминием, кальцием и/или оксидом кальция, фторидом кальция при поддержании соотношения между ними по массе 1:(0,58-1,62):(0,28-1,1):(0,09-0,32) и ведут восстановительную плавку шихты в воздушной или нейтральной атмосфере при температурах 1450-1750°С в печах сопротивления, индукционных или дуговых электропечах, после чего отделяют титаноалюминиевый сплав от шлака.

Заявленный способ испытан в лабораторных условиях.

Пример 1. Шихту массой 150-200 г, состоящую из титансодержащего шлака производства ферротитана, состава, %: 30,0 TiO2, 0,1 FeO, 51,0 Al2O3, 10,5 CaO, 4,0 MgO (крупность менее 1 мм), порошка алюминия (крупность менее 0,1 мм), оксида кальция (CaO) и фторида кальция (CaF2), смешивали и постепенно загружали в корундовый тигель, установленный в лабораторной печи сопротивления, и расплавляли при температурах 1450-1600°С. Соотношение масс TiO2:Al:CaO:CaF2 варьировали в пределах 1:(0,5-1,65):(0,25-1,05):(0,08-0,35). После проплавления шихты расплав выдерживали 10-20 минут при температурах 1400-1800°С и затем вместе с тиглем извлекали из печи и охлаждали на воздухе. Общая продолжительность процесса не превышала 30 мин.

Результаты опытов по получению титаноалюминиевого сплава приведены в таблице. При отношении алюминия к количеству диоксида титана в шихте менее 0,58 не достигается степень извлечения в титаноалюминиевый сплав титана более 70% и увеличивается содержание кислорода в сплаве более 1%. Осуществление процесса с отношением алюминия к количеству диоксида титана в шихте более 1,62 не способствует увеличению степени извлечения в титаноалюминиевый сплав титана и приводит к уменьшению содержания в сплаве титана - менее 30%.

Данные таблицы свидетельствуют, что проведение алюминотермической плавки с получением титаноалюминиевого сплава, содержащего более 30% Ti, в контролируемых температурных условиях при 1450-1750°С и отношении масс TiO2:Al:CaO:CaF2 в пределах 1:(0,58-1,62):(0,28-1,1):(0,09-0,32) обеспечивает (при сопоставимой с прототипом интенсивности процесса) повышение степени извлечения титана в целевые продукты - титаноалюминиевые сплавы (в сравнении с прототипом в 1,2-1,6 раза), повышение качества этих сплавов и получение вторичного оксидного полупродукта - алюмокальциевого шлака, пригодного для последующего производства высококачественного цемента. Содержание кислорода в титаноалюминиевых сплавах заметно ниже, чем по способу-прототипу. При этом обеспечивается также низкое содержание в сплавах Ti-Al азота, что важно для качества сплава, так в этом случае практически исключается образование нитридных включений. В указанных условиях извлечение в титаноалюминиевый сплав Ti составило 91,2-99,1%. Содержание кислорода в сплавах равнялось 0,1-0,9%, а азота - 0,06-0,09%.

Пример 2. Шихту массой 1 кг, состоящую из титанового шлака производства ферротитана, состава, %: 18.3 TiO2, 8.6 FeO, 62.0 Al2O3, 11.2 CaO, 4.0 SiO2, порошка алюминия (крупность менее 0,1 мм), гранул кальция крупностью 0,1-0,2 мм и фторида кальция, смешивали в соотношении масс TiO2:Al:Ca:CaF2 как 1:0,65:0,5:0,15 и постепенно загружали в корундовый тигель, установленный в индукционной электропечи, и, расплавляли в течение 30-40 минут. Температура шлаковой ванны составляла 1600-1700°С. По окончании плавления шихты расплав выдерживали в течение 15-20 минут, затем сливали в изложницу, охлаждали и проводили разделение продуктов плавки. Общая продолжительность процесса плавки не превышала 40 мин. В результате получили сплав, содержащий, %: 32,1% Ti и 0,2% кислорода, 0,08% азота. Извлечение в сплав Ti составило 95,8%.

Показатели плавок в печи сопротивления Температура, °С Состав шихты, масс.% TiO2:Al:CaO:CaF2 Разделение металла и шлака Содержание титана и кислорода в титаноалюминиевом сплаве, масс.% Извлечение Ti в сплав, % TiO2 Al CaO CaF2 Ti O N Прототип 1800 27.1 12.2 11.1 - 1:0.45:0.41 Не очень хорошее 40.1 4.2 1.6 65.0 Предлагаемый способ 1800 25.3 14.7 11.6 3.8 1:0.58:0.46:0.15 Хорошее 36.5 2.1 0.20 68.1 1750 26.4 13.2 12.1 4.0 1:0.50:0.46:0.15 Не очень хорошее 38.4 2.0 0.25 67.2 1750 25.8 15.0 6.5 2.1 1:0.58:0.25:0.08 Плохое 37.5 1.8 0.18 68.4 1750 25.4 14.8 7.1 2.9 1:0.58:0.28:0.09 Хорошее 36.5 0.9 0.08 97.8 1700 20.9 17.3 9.6 3.1 1:0.83:0.46:0.15 Хорошее 34.2 0.1 0.06 99.1 1450 15.7 25.4 17.3 5.0 1:1.62:1.1:0.32 Хорошее 31.3 0.2 0.09 91.2 1450 14.3 23.6 15.7 4.6 1:1.65:1.1:0.32 Не очень хорошее 29.2 0.3 0.12 84.5 1450 14.5 23.2 16.7 5.0 1:1.60:1.15:0.35 Плохое 26.5 1.2 0.15 67.4 1400 16.2 24.3 7.5 2.4 1:1.50:0.46:0.15 Плохое 27.6 1.5 0.23 58.6

Пример 3. Шихту (1,5 кг), состоящую из титансодержащего шлака доменного производства состава, масс.%: 17.9 TiO2, 0.6 Fe, 0.4 Mn, 15.4 Al2O3, 15.2 CaO, 38.6 SiO2 (крупность менее 2 мм), алюминиевой крупки (0,1-3,0 мм), гранул кальция крупностью 0,1-0,2 мм, оксида кальция и плавикового шпата (CaF2), смешивали в соотношении TiO2:Al:(Ca+CaO):CaF2 1:0,7:(0,1+0,9):0,15 и расплавляли в двухэлектродной электропечи с магнезитовой футеровкой в течение 30-40 минут. Температура шлаковой ванны составляла 1500-1600°С. По окончании плавления шихты расплав выдерживали в течение 15-20 минут, затем сливали в изложницу, охлаждали и проводили разделение продуктов плавки. Общая продолжительность процесса плавки не превышала 60 мин. В результате получили сплав, содержащий, %: 36,7% Ti и 0,1% кислорода, 0,06-0,12% азота. Извлечение в сплав Ti составило 93,8%.

Предложенный способ позволяет повысить качество получаемого титаноалюминиевого сплава при высокой степени извлечения титана из титансодержащего шлака и улучшении разделения сплава и шлака за счет образования легкоплавкой подвижной шлаковой системы.

Похожие патенты RU2522876C1

название год авторы номер документа
СПОСОБ ПОЛУЧЕНИЯ ТИТАНОАЛЮМИНИЕВОГО СПЛАВА ИЗ ОКСИДНОГО ТИТАНСОДЕРЖАЩЕГО МАТЕРИАЛА 2012
  • Красиков Сергей Анатольевич
  • Надольский Александр Львович
  • Ситникова Ольга Александровна
  • Пономаренко Артём Александрович
RU2485194C1
СПОСОБ ПОЛУЧЕНИЯ АЛЮМИНИЕВОГО СПЛАВА С СОДЕРЖАНИЕМ ЦИРКОНИЯ БОЛЕЕ 30% ИЗ ОКСИДНОГО ЦИРКОНИЙСОДЕРЖАЩЕГО МАТЕРИАЛА (ВАРИАНТЫ) 2013
  • Красиков Сергей Анатольевич
  • Агафонов Сергей Николаевич
  • Пономаренко Артём Александрович
  • Тимофеев Александр Иванович
  • Надольский Александр Львович
RU2560391C2
СПОСОБ ПОЛУЧЕНИЯ ВЫСОКОПРОЦЕНТНОГО ФЕРРОТИТАНА 2008
  • Галкин Михаил Владимирович
RU2398907C2
СПОСОБ АЛЮМИНОТЕРМИЧЕСКОГО ПОЛУЧЕНИЯ ФЕРРОТИТАНА 2006
  • Носенков Алексей Игоревич
  • Медведев Игорь Александрович
  • Медведев Дмитрий Александрович
  • Дронов Михаил Анатольевич
RU2338805C2
СПОСОБ МЕТАЛЛИЗАЦИИ ТИТАНОМАГНЕТИТОВЫХ КОНЦЕНТРАТОВ С ПОЛУЧЕНИЕМ ЖЕЛЕЗНЫХ ГРАНУЛ И ТИТАНОВАНАДИЕВОГО ШЛАКА 2008
  • Макаров Юрий Витальевич
  • Садыхов Гусейнгулу Бахлул Оглы
  • Самойлова Галина Григорьевна
  • Мизин Владимир Григорьевич
RU2399680C2
СПОСОБ ПОПУТНОГО ПОЛУЧЕНИЯ СПЛАВА ФЕРРОСИЛИКОТИТАНА ПРИ ВЫПОЛНЕНИИ ДОМЕННОЙ ПЛАВКИ ТИТАНОМАГНЕТИТОВЫХ КОНЦЕНТРАТОВ 2013
  • Харитонов Олег Юрьевич
RU2563068C2
СПОСОБ ПЕРЕРАБОТКИ ТИТАНОМАГНЕТИТОВОЙ ВАНАДИЙСОДЕРЖАЩЕЙ РУДЫ НА ТИТАНИСТЫЙ ЧУГУН, ВАНАДИЕВЫЙ ШЛАК И ТИТАНОСОДЕРЖАЩИЙ СПЛАВ 2001
  • Коршунов Е.А.
  • Смирнов Л.А.
  • Буркин С.П.
  • Дерябин Ю.А.
  • Логинов Ю.Н.
  • Миронов Г.В.
RU2206630C2
СПОСОБ ПРОИЗВОДСТВА ТИТАНОСОДЕРЖАЩЕЙ ПРОДУКЦИИ И УСТРОЙСТВО ДЛЯ ОСУЩЕСТВЛЕНИЯ СПОСОБА 2005
  • Коршунов Евгений Алексеевич
  • Гайнанов Дамир Насибуллович
  • Ардашов Михаил Геннадьевич
  • Маевский Владислав Владиславович
  • Бастриков Валерий Леонидович
  • Третьяков Василий Сергеевич
  • Тарасов Анатолий Григорьевич
  • Арагилян Олег Ашотович
  • Лисиенко Владимир Георгиевич
  • Сарапулов Федор Никитич
  • Кобелев Валерий Алексеевич
  • Сарапулов Сергей Федорович
RU2311469C2
СПОСОБ ПРОИЗВОДСТВА ВЫСОКОТИТАНОСОДЕРЖАЩЕЙ ЛИГАТУРЫ 2003
  • Коршунов Е.А.
  • Тарасов А.Г.
  • Третьяков В.С.
  • Гайнанов Д.Н.
  • Ардашов М.Г.
  • Бастриков В.Л.
  • Фадеев В.В.
RU2250271C1
Шихта для получения ферротитана 1982
  • Резниченко Владлен Алексеевич
  • Соловьев Владимир Иванович
  • Петрова Валентина Александровна
SU1027258A1

Реферат патента 2014 года СПОСОБ ПЕРЕРАБОТКИ ТИТАНОВЫХ ШЛАКОВ

Изобретение относится к области металлургии и может быть использовано при переработке титансодержащего шлака на титано-алюминиевый сплав. Способ включает приготовление шихты смешением титансодержащего шлака с алюминием и кальцийсодержащим материалом, в качестве которого используют фторид кальция и кальций, или фторид кальция и оксид кальция, или фторид кальция и смесь кальция и оксида кальция, при поддержании в шихте соотношения диоксид титана:порошок алюминия:кальций и/или оксид кальция:фторид кальция по массе 1:(0,58-1,62):(0,28-1,1):(0,09-0,32), восстановительную плавку шихты при температуре 1450-1750°С и отделение сплава от шлака. Изобретение позволяет повысить качество сплава и извлечение титана в сплав, а также улучшить процесс разделения сплава от шлака. 2 з.п. ф-лы, 2 пр., 1 табл.

Формула изобретения RU 2 522 876 C1

1. Способ переработки титановых шлаков, включающий восстановительную плавку титансодержащего шлака с алюминием и кальцийсодержащим материалом и отделение сплава от шлака, отличающийся тем, что в качестве кальцийсодержащего материала используют фторид кальция и кальций, или фторид кальция и оксид кальция, или фторид кальция и смесь кальция и оксида кальция при поддержании в шихте соотношения диоксид титана:алюминий:кальций и/или оксид кальция:фторид кальция по массе 1:(0,58-1,62):(0,28-1,1):(0,09-0,32), а восстановительную плавку ведут при температуре 1450-1750°С.

2. Способ по п.1, отличающийся тем, что в качестве титансодержащего шлака используют шлак от производства ферротитана.

3. Способ по п.1, отличающийся тем, что в качестве титансодержащего шлака используют шлак от плавки титаномагнетитовой руды в электро- или доменной печи.

Документы, цитированные в отчете о поиске Патент 2014 года RU2522876C1

СПОСОБ ПРОИЗВОДСТВА ВЫСОКОТИТАНОСОДЕРЖАЩЕЙ ЛИГАТУРЫ 2003
  • Коршунов Е.А.
  • Тарасов А.Г.
  • Третьяков В.С.
  • Гайнанов Д.Н.
  • Ардашов М.Г.
  • Бастриков В.Л.
  • Фадеев В.В.
RU2250271C1
СПОСОБ ПЕРЕРАБОТКИ ШЛАКОВ, СОДЕРЖАЩИХ ОКСИД ТИТАНА 2005
  • Коршунов Евгений Алексеевич
  • Гайнанов Дамир Насибуллович
  • Ардашов Михаил Геннадьевич
  • Маевский Владислав Владиславович
  • Бастриков Валерий Леонидович
  • Третьяков Василий Сергеевич
  • Тарасов Анатолий Григорьевич
  • Арагилян Олег Ашотович
  • Лисиенко Владимир Георгиевич
  • Сарапулов Федор Никитич
  • Кобелев Валерий Алексеевич
  • Сарапулов Сергей Федорович
RU2295582C1
СПОСОБ ПЕРЕРАБОТКИ ТИТАНСОДЕРЖАЩИХ ШЛАКОВ 2002
  • Кожевников Г.Н.
  • Водопьянов А.Г.
  • Шаврин С.В.
  • Леонтьев Л.И.
  • Столяров Ю.В.
RU2215053C1
Устройство для гашения гидравлических ударов 1983
  • Разуваев Владимир Степанович
  • Масляков Иван Михайлович
SU1126766A1
SI 9800280 A, 28.02.1999
US 3704114 A, 28.11.1972

RU 2 522 876 C1

Авторы

Саввинова Алена Анатольевна

Надольский Александр Львович

Красиков Сергей Анатольевич

Даты

2014-07-20Публикация

2012-12-03Подача