СПЛАВ НА ОСНОВЕ ХРОМА Российский патент 2014 года по МПК C22C27/06 

Описание патента на изобретение RU2522994C1

Изобретение относится к деформируемым сплавам на основе хрома, работающим в окислительных средах при повышенных температурах в течение длительного времени.

Известны сплавы на основе хрома, работающие в газовых средах при высоких температурах, содержащие компоненты при следующем соотношении, масс.%:

хром 55-70, вольфрам 2-8, алюминий 0,5-2, титан 0,2-0,8, кремний 0,6-2, углерод 0,1-0,4, азот 0,003-0,008, бор 0,005-0,03, никель 1-1,5, железо - остальное (а.с. СССР №1475177, №1683346). Сплавы относятся литейным и не предназначены для деформации.

Известны сплавы на основе хрома, позиционируемые как обладающие наилучшим соотношением между прочностью и пластичностью при высокой температуре. Сплав с наилучшим соотношением прочность-пластичность при температуре не ниже 1000°С, а для сверхвысокой температурной зоны не ниже 1050°С содержит не менее 65% хрома, сумма углерода и азота не более 20 млн-1, сера не более 20 млн-1, кислород не более 100 млн-1, кислород в составе оксида не более 50 млн-1, железо и др. примеси - остальное (пат. №7037467 США, МПК7 С22С 27/06, опубликован, 02.05.2006). Согласно регламенту авторов патента, требования к шихте при выплавке сплава по чистоте хрома не ниже 99,9%, по железу - 99,998%, а к технологии - плавка в водоохлаждаемом медном тигле. Недостатком сплава является низкая технологичность при выплавке.

Наиболее близким к предлагаемому по технической сущности и достигаемому эффекту оптимального соотношения между жаропрочностью и технологической пластичностью является сплав ВХ4, содержащий компоненты при следующем соотношении, масс.%: хром - основа, никель 31-35, вольфрам 1-3, ванадий 0,1-0,4, титан 0,05-0,3 (Б.А. Колачев, В.А. Ливанов, В.Н. Елагин. - «Металловедение и термическая обработка металлов и сплавов». Изд-во «Металлургия, 1981). Сплав выплавляют в вакуумных индукционных печах с использованием огнеупоров на основе оксидов алюминия Al2O3, бериллия ВеО и иттрия Y2O3. Деформированные полуфабрикаты (прутки, трубы, листы, поковки, штамповки и др.) получают методами горячей деформации. Сплав способен длительно работать без защитных покрытий до температуры 1350°С. Жаропрочность при температуре 1000°С - 240 МПа. Однако при этой температуре сплав имеет низкое сопротивление ползучести, в силу чего температурный диапазон работы нагруженных конструкций ограничен 800-900°С.

Задачей, на решение которой направлено предлагаемое изобретение, является расширение температурного диапазона работы нагруженных конструкций за счет повышения температуры перехода от диффузионной к высокотемпературной ползучести.

Технический результат - сохранение высокой пластичности при температуре горячей деформации.

Это достигается тем, что сплав на основе хрома, содержащий никель, вольфрам, ванадий и титан, дополнительно содержит железо при следующем соотношении компонентов, масс.%: никель 20-40, вольфрам 0,5-5, ванадий 0,05-1, титан 0,05-1, железо 0,1-5, а отношение Cr/(Ni+Fe) выбирается в пределах от 1,5 до 2.

Содержание никеля в пределах 20-40 масс.% обеспечивает высокую технологическую пластичность при горячей деформации за счет высокой объемной составляющей твердого раствора на основе никеля в двухфазном сплаве α (твердый раствор Ni в Cr) + γ (твердый раствор Cr в Ni), по которому преимущественно развивается пластическая деформация (фиг.1).

Содержание вольфрама, ванадия и гитана в указанных пределах упрочняют сплав. Железо уже при содержании 0,1-0,2 масс.% заметно увеличивает температуру перехода от диффузионной к высокотемпературной ползучести и понижает скорость высокотемпературной ползучести. При содержании железа >5 масс.% резко снижается технологическая пластичность и возрастает температура горячей деформации. Отношение Cr/(Ni+Fe) в пределах от 1,5 до 2 определяется, с одной стороны, условиями обеспечения технологической пластичности, достаточной для горячей деформации, с другой стороны - формированием перколяционного кластера α-твердого раствора на основе хрома, ответственного за жаропрочность.

Примеры конкретного применения.

Пример 1.

Сплав 1 на основе хрома, содержащий (масс.%): никель 33,3, вольфрам 0,8, ванадий 0,25, титан 0,11, железо 0,2. Соотношение Cr/(Ni+Fe)=1,95.

Пример 2.

Сплав 2 на основе хрома, содержащий (масс.%): никель 33,1, вольфрам 1,68, ванадий 0,06, титан 0,1, железо 1,52. Соотношение Cr/(Ni+Fe)=1,84.

Пример 3.

Сплав 3 на основе хрома, содержащий (масс.%): никель 31,5, вольфрам 4,81, ванадий 0,9, титан 0,8, железо 4,82. Соотношение Cr/(Ni+Fe)=1,57.

Пример 4 (прототип).

Сплав на основе хрома, содержащий (масс.%): никель 32, вольфрам 2,08, ванадий 0,35, титан 12, железо 0,042. Соотношение Cr/(Ni+Fe)=2,04.

Во всех примерах механические испытания проводили на прессованном прутке ⌀26 мм. Технология получения прессованного прутка ⌀26 мм включала вакуумно-индукционную выплавку слитков, электрошлаковый переплав слитков и прессование прутка.

Температура перехода от диффузионной ползучести к высокотемпературной ползучести увеличивается по мере повышения содержания железа при условии соотношения Cr/(Ni+Fe) в пределах 1,5-2.

Сплавы предлагаемого состава 1-3 имеют температуру перехода от диффузионной к высокотемпературной ползучести по крайней мере на 50°С выше, чем прототип, сохраняя высокую пластичность при температуре горячей деформации (таблица 1), что особенно наглядно демонстрирует диаграмма (фиг.2).

Таблица 1 Механические свойства сплавов хрома Объект Температура
испытаний, °С
Временное
сопротивление, МПа
Условный
предел
текучести, МПа
Относительное
удлинение, %
Сплав 1 (предлагаемый) 20 1150 951 20,2 800 404 380 27,5 900 320 290 33,1 950 205 180 150 1000 130 85 180 Сплав 2 (предлагаемый) 20 1186 992 14,3 900 366 340 24,8 1055 125 87 48 1084 94 83 179 1086 89 82 136 1095 69 64 149 Сплав 3 (предлагаемый) 20 1212 1080 12,4 900 390 330 44 1100 82 79 51 1150 68 64 52,5 1200 65 62 130 Сплав 4 (прототип) 20 1180 980 18 800 420 405 25 900 300 290 120 1000 90 81 190 Примечание: выделена температура высокотемпературной ползучести, в области которой относительное удлинение возрастает на 80-150%.

Похожие патенты RU2522994C1

название год авторы номер документа
ЖАРОПРОЧНАЯ СТАЛЬ МАРТЕНСИТНОГО КЛАССА 2014
  • Кайбышев Рустам Оскарович
  • Беляков Андрей Николаевич
  • Дудова Надежда Рузилевна
  • Дудко Валерий Александрович
  • Федосеева Александра Эдуардовна
  • Мишнев Роман Владимирович
RU2585591C1
ЖАРОПРОЧНЫЙ СПЛАВ 2015
RU2579403C1
Жаропрочный сплав 2019
  • Афанасьев Сергей Васильевич
  • Исмайлов Олег Захидович
  • Пыркин Александр Валерьевич
RU2700347C1
ПОРОШКОВЫЙ ВЫСОКОТЕМПЕРАТУРНЫЙ ИЗНОСОСТОЙКИЙ СПЛАВ НА ОСНОВЕ НИКЕЛЯ 1993
  • Сурикова М.А.
  • Манегин Ю.В.
RU2038401C1
ЖАРОПРОЧНАЯ ВЫСОКОПЛАСТИЧНАЯ АУСТЕНИТНАЯ СТАЛЬ 2009
  • Банных Олег Александрович
  • Блинов Виктор Михайлович
  • Банных Игорь Олегович
  • Блинов Евгений Викторович
  • Зверева Тамара Николаевна
  • Ригина Людмила Георгиевна
  • Дуб Владимир Семенович
  • Берман Леонид Исаевич
  • Скоробогатых Владимир Николаевич
  • Тыкочинская Татьяна Васильевна
RU2415197C1
ЖАРОПРОЧНЫЙ СПЛАВ НА ОСНОВЕ ХРОМА И СПОСОБ ВЫПЛАВКИ СПЛАВА НА ОСНОВЕ ХРОМА 2014
  • Береснев Александр Германович
  • Бутрим Виктор Николаевич
  • Каширцев Валентин Николаевич
  • Адаскин Анатолий Матвеевич
RU2557438C1
Жаропрочный сплав 2019
  • Афанасьев Сергей Васильевич
  • Исмайлов Олег Захидович
  • Пыркин Александр Валерьевич
RU2700346C1
ЖАРОПРОЧНЫЙ СПЛАВ 2016
RU2632728C2
КОРРОЗИОННО-СТОЙКИЙ СПЛАВ НА ОСНОВЕ Fe-Cr-Ni, ИЗДЕЛИЕ ИЗ НЕГО И СПОСОБ ИЗГОТОВЛЕНИЯ ИЗДЕЛИЯ 2010
  • Кузнецов Юрий Васильевич
RU2441089C1
ХРОМОНИКЕЛЕВОАЛЮМИНИЕВЫЙ СПЛАВ С ХОРОШИМИ ПОКАЗАТЕЛЯМИ ОБРАБАТЫВАЕМОСТИ, ПРЕДЕЛА ПОЛЗУЧЕСТИ И КОРРОЗИОННОЙ СТОЙКОСТИ 2013
  • Хаттендорф, Хайке
RU2599324C2

Иллюстрации к изобретению RU 2 522 994 C1

Реферат патента 2014 года СПЛАВ НА ОСНОВЕ ХРОМА

Изобретение относится к деформируемым сплавам на основе хрома, работающим в окислительных средах при повышенных температурах в течение длительного времени. Сплав на основе хрома содержит, мас.%: никель 20,0-40,0, вольфрам 0,5-5,0, ванадий 0,05-1,0, титан 0,05-1,0, железо 0,1-5,0, хром - остальное. Отношение содержания хрома к сумме содержаний никеля и железа Cr/(Ni+Fe) составляет от 1,5 до 2. Сплав характеризуется высокой пластичностью при температуре горячей деформации. Расширяется температурный диапазон работы нагруженных конструкций за счет повышения температуры перехода от диффузионной к высокотемпературной ползучести. 2 ил., 1 табл., 2 пр.

Формула изобретения RU 2 522 994 C1

Сплав на основе хрома, содержащий никель, вольфрам, ванадий, титан, отличающийся тем, что он дополнительно содержит железо при следующем соотношении компонентов, мас.%:
никель 20,0-40,0 вольфрам 0,5-5,0 ванадий 0,05-1,0 титан 0,05-1,0 железо 0,1-5,0 хром остальное,


при этом отношение содержания хрома к сумме содержаний никеля и железа Cr/(Ni+Fe) составляет от 1,5 до 2.

Документы, цитированные в отчете о поиске Патент 2014 года RU2522994C1

Сплав на основе хрома 1990
  • Василюк Петр Михайлович
  • Бутенко Леонид Иосифович
  • Гаврилюк Валерий Савич
SU1756371A1
СПЛАВ НА ОСНОВЕ ХРОМА 1971
SU425963A1
DE 3620167 A, 17.12.1987
JP 3933213 B2, 20.06.2007
US 3811960 A, 21.05.1974

RU 2 522 994 C1

Авторы

Бутрим Виктор Николаевич

Каширцев Валентин Николаевич

Мироненко Виктор Николаевич

Васенев Валерий Валерьевич

Береснев Александр Германович

Верстаков Николай Михайлович

Дембицкий Александр Марьянович

Мурашко Вячеслав Михайлович

Панфилов Виталий Алексеевич

Даты

2014-07-20Публикация

2013-07-09Подача